
Resolutions via monoids

Andres Fernandez Herrero

Abstract

Short note on canonical/ bar resolutions.

1 Monoidal categories and monoids

Definition 1.1. Let C be a category. A strict monoidal structure on C consists of
a functor ⊗ : C × C −→ C satisfying the following two conditions.

(1) There is an object 1C in C such that we have equality of functors 1C ⊗ (−) =
(−)⊗ 1C = idC.

(2) The following diagram commutes

C × C × C C × C

C × C C

⊗×idC

idC×⊗ ⊗

⊗

A category equipped with a strict monoidal structure will be called a strict monoidal
category.

By the Yoneda lemma, the object 1C is unique up to isomorphism. We call it
the unit of the monoidal structure. There is a natural dual notion of comonoid
object obtained by inverting all arrows in the definition above.

Example 1.2. Let D be any category. The category End(D) of endofunctors
has functors F : D −→ D as objects. The morphisms are given by natural
transformations. The category End(D) is equipped with a strict monoidal structure
◦ given by compositions of functors.

Definition 1.3. Let (C,⊗C) and (D,⊗D) be two strict monoidal categories. A
functor F : C → D is called monoidal if it preserves the monoidal structures. We
let Fun⊗(C,D) be the full subcategory of Fun(C,D) consisting of monoidal functors.

Let us fix for the remaining of this section a strict monoidal category (C,⊗).

Definition 1.4. A monoid in C consits of the data of
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(i) An object M in C.

(ii) A morphism e : 1C →M .

(iii) A morphism m : M ⊗M →M .

The following two diagrams are required to commute.

M M ⊗M

M ⊗M M

e⊗idM

idM⊗e
idM m

m

M ⊗M ⊗M M ⊗M

M ⊗M M

m⊗idM

idM⊗m m

m

The monoid objects in C form a category MonoidC. The morphisms consists
of morphisms of the underlying objects that intertwine the monoid structures.

Definition 1.5. ∆ denotes the subcategory of Set given as follows. Its objects are
finite ordered sets of the form [n] = {0, 1, ..., n} for n ≥ 0. The morphisms are
order preserving maps between two such sets.

∆aug denotes the category obtained from ∆ by adjoining an additional object
[−1] := ∅, which is initial in ∆aug.

We recall that there are certain distinguished morphisms in ∆ called the coface
and codegeneracy maps. We will denote the coface maps by di : [n] −→ [n + 1]
and the codegeneracy maps by si : [n+ 1] −→ [n].

Definition 1.6. A functor F : ∆aug −→ C is called a comsimplicial object in C.
We will usually write Fn := F ([n]).

There is a strict monoidal structure + on ∆aug. For any sets [n], [m] in ∆aug,
we can set [n] + [m] = [n + m + 1]. One should think of + as stacking the two
sets one after the other, i.e. listing first the elements of [n] and then listing the
elements of [m]. For any two maps of sets f : [n] → [l] and g : [m] → [k], the
corresponding morphism f + g : [n] + [m]→ [l] + [k] is given by stacking the maps
f, g one after the other. Notice that [−1] is the unit of +.

Suppose that we are given a monoidal functor F : ∆aug → C. We must have
F−1 = 1C. Let us set M := F0. Notice that we must have F−1 = F ([0] + [0]) =
M ⊗M . Note that there are unique maps of sets [1] → [0] and [−1] → [0]. We
can apply F in order to obtain morphisms m : M ⊗M → M and e : 1C → M .
The fact that F is a functor implies that (M, e,m) is a monoid in C.

We can use this observation to obtain a functor UC : Fun⊗(∆aug, C) −→
MonoidC.
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Proposition 1.7. The functor UC is an equivalence of categories.

Proof. Let us describe a quaisinverse functor MC : MonoidC −→ Fun⊗(∆aug, C).
Let M be a monoid in C. We define MC(M) as follows. Set MC(M)n := M⊗n+1.
The coface maps di : M⊗n −→M⊗n+1 are given by

di := id⊗i−1M ⊗ e⊗ id⊗n−iM

The codegeneracies si : M⊗n+1 −→M⊗n are given by

si := id⊗i−1M ⊗m⊗ id⊗n−iM

We can also use the category ∆op
aug with its dual comonoid structure. This way

we can obtain the analogue of Proposition 1.7 for comonoids.

Definition 1.8. Let (M, e,m) be a monoid in C. A M -algebra consists of the data
of

(i) An object A in C.

(ii) A morphism a : M ⊗ A→ A (action morphism).

These are required to make the following two diagrams commute.

A A⊗M

M ⊗ A M

e⊗idA

idA⊗e
idA

a

a

M ⊗M ⊗ A M ⊗ A

M ⊗ A A

m⊗idA

idM⊗a a

a

We have a dual notion of coalgebras over a comonoid.

For a given monoid (M, e,m), we will denote by Alg
M

the category of M -
algebras. Morphisms are required to intertwine the action morphisms. There is
an obvious functor UM : Alg

M
−→ C given by forgetting the algebra structure.

Proposition 1.9. The functor UM admits a left adjoint FM : C −→ Alg
M

.

Proof. We describe FM , as well as the unit and counit morphisms. Let C be an
object in C. The algebra FM(C) will have underlying object M ⊗ C in C. The

action map is given by a : M ⊗M ⊗ C m⊗idC−−−−→M ⊗ C.

3



The unit ξ : IdC ⇒ UMFM is given as follows. For any algebra C ∈ Ob(C), we
set

η(A) : C
e⊗idC−−−−−→M ⊗ C

The counit η : FMUM ⇒ IdAlgM is given as follows. Let A be a M -algebra with
action map a : M ⊗ A −→ A. We define

η(A) : M ⊗ A a−→ A

2 Resolutions

Let us fix a category C.

Definition 2.1. A (co)monad on C is a (co)monoid object in the strict monoidal
category (End(C), ◦). In detail, a monad consists of the data of

(i) An endofunctor T : C → C.

(ii) A natural transformation m : T ◦ T ⇒ T (the multiplication).

(iii) A natural transformation e : idT ⇒ T (the identity).

They satisfy conditions as in Definition 1.4.

Example 2.2. Adjunctions between functors provide a natural source of (co)monads.
Let C and D be categories. Let F : C −⇀↽− D :U be a pair of adjoint functors. Recall
that the unit of the adjunction is a natural transformation ξ : idC ⇒ UF . The
counit is a natural transformation η : FU ⇒ idD. We can compose with F and U
to obtain natural transformations

FξU : FU ⇒ (FU) ◦ (FU)

UηF : (UF ) ◦ (UF )⇒ UF.

The properties of the unit and counit imply that (UF, ξ, UηF ) is a monad on
D. Similarly (FU, η, FξU) is a comonad in C.

Definition 2.3. Let T be a monad on C. An algebra over T consits of the data of

(i) An object A in C.

(ii) A morphism a : TA→ A (action morphism).

These are required to make the following two diagrams commute.

A TA

A

e(A)

idA a
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T 2 ⊗ A TA

TA A

m(A)

T (a) a

a

The collection of algebras over T form a category Alg
T

. There is a forgetful map
UF : Alg

T
−→ C. The same argument as in Proposition 1.9 yields the following.

Proposition 2.4. The forgetful functor UT admits a left adjoint FT : C −→ Alg
T

.

Let T be a monad on C. Proposition 1.7 yields an augmented cosimplicial object
MEnd(C)(T ) : ∆aug −→ End(C). Recall that the image of the object [−1] is idC. We
can use currying to interpret this as a functor MEnd(C)(T ) : C −→ Fun(∆aug, C).
In plain words, this yields a functorial assignment of an augmented cosimplicial
object for all C ∈ C. We call MEnd(C)(T ) (C) the canonical cosimplicial resolution
associated to T . We denote it by CanT (C). Notice that depends functorially
on the monad. If we have a morphism of monads T → S (i.e. a morphism
of monoid objects in End(C)) we get an associated map of canonical resolutions
CanT (−)⇒ CanS(−).

This construction is usually applied to (co)monads coming from adjunctions
as in Example 2.2. Let F : C −⇀↽− D :U be a pair of adjoint functors. Recall that
this yields a monad UF on C. For each C ∈ Ob C, we get a canonical cosimplicial
resolution CanUF (C). Let us give a detailed description using the construction of
MEnd(C) in Proposition 1.7.

We have CanUF (C)n = (UF )◦(n+1)(C). The coface map di : (UF )◦n(C) −→
(UF )◦n+1(C) is

di = (UF )◦i−1 ξ (UF )◦n−i(C)

The codegeneracy maps si : (UF )◦n+1(C) −→ (UF )◦n(C) are given by

si = (UF )◦i−1 U η F (UF )◦n−i(C)

For all n ≥ 0, we have that CanUF (C)n is in the image of U . It is sometimes
the case that the essential image of U consists of objects that are well-behaved
(e.g. injective sheaves, acyclic objects with respect to some functor ...). In this
case CanUF (C) provides us with a resolution in terms of such well-behaved objects.
The next step is to show“exactness” of such resolutions. For this we first need
some terminology.

Definition 2.5. The category ∆spl
aug has the same objects as ∆aug. The morphisms

are consits of the morphisms of ∆aug plus ”extra” codegeneracy morphism s−1 :
[n] −→ [n− 1] for all n ≥ 0. This morphisms satisfy the following identities

(a) s−1d0 = id[n−1] for all n ≥ 0.

(b) s−1di+1 = dis−1 for all i.

(c) s−1si+1 = sis−1 for all i.
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We say that an augmented cosimplicial object splits if it extends to a covariant
functor from the larger category ∆spl

aug.

Remark 2.6. See [GJ09] page 199 or [Rie14]. Apparently there are several
nonequivalent definitions of contractible simplicial set, as show in [MB].

This is a natural notion of exactness for (co)simplicial objects, as the next
couple of examples show.

Example 2.7 (Acyclicity of Moore complex). Let C be an abelian category. Let
C• : ∆aug −→ C be a cosimplicial object. We can form the corresponding Moore
complex as in [GJ09] pg. 146. The differential is given by the alternating sum of
the face maps. If C• is split, then the Moore complex admits a chain homotopy
[GJ09] Lemma 2.15 in page 160. In particular it is acyclic.

Example 2.8 (Descent for morphisms that admit a section). Let S be a scheme.
Set C := Sch/S to be the category of schemes over S. Let X be a contravariant
groupoid-valued pseudofunctor on Sch/S (e.g. an algebraic stack over S). Let
C• : ∆aug −→ Sch/S be an augmented simplicial object. If C• admits a splitting,
then there is an equivalence of groupoids Fun(C•,X ) ' X (C−1).

We end this section by showing that canonical resolutions associated to adjoint
pairs are not very far from being split.

Proposition 2.9. Let F : C −⇀↽− D :U be a pair of adjoint functors. Fix an object
C in C. Consider the canonical resolution CanUF (C). The comsimplicial object
in D given by the composition composition F ◦ CanUF (C) admits a splitting.

If the functor F is“faithfully-exact” in some sense, then we can conclude
exactness of the canonical resolution. We refer to the next section for examples
clarifying how this works in practice.

For completeness, we state the analogous result for the comonad FU . Let D
be an object in D. We denote by CanFU(D) : ∆op

aug −→ D the corresponding
augmented simplicial object in D.

Proposition 2.10. Let F : C −⇀↽− D :U be a pair of adjoint functors. Fix an object
D in D. Consider the canonical resolution CanFU(D). The agumented simplicial
object in C given by the composition composition U ◦CanFU(D) admits a splitting.

Remark 2.11. The canonical resolution is universal among resolutions satisfying
an ‘acyclicity” condition closely related to the splitting in Propositions 2.9 and
2.10. For more details, see [nLa].

3 Examples

In this section we give several applications of the ideas we have discussed. We
show how one can exploit naturally arising monoid objects in order to produce
functorial resolutions in algebra and algebraic geometry.
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In practice one often encounters (nonstrict) monodoidal categories. This means
that there are canonical associativity and unit isomorphisms that satisfy certain
coherence conditions. All of our discussion for strict categories applies verbatim
to nonstrict categories. One only needs to compose with the appropriate isomor-
phisms when forming the corresponding resolutions.

Example 3.1 (Cech nerve). One can easily obtain monoidal structures in cate-
gories with fiber products. Let us give an example. Let S be a scheme, and set
C = Sch/S to be the category of schemes over S. The fiber product ×S gives
SchS the structure of a monoidal category. Any object f : X → S in Sch/S ad-
mits the structure of a comonoid with multiplication map given by the diagonal
∆ : X −→ X ×S X. The dual of Proposition 1.7 yields an augmented simplicial
scheme

... X ×S X ×S X −→−→
−→

X ×S X −→−→X −→ S

This is usually called the Cech nerve of the map f : X −→ S. Any morphism
X −→ Y in SchS preserves the comonoid structures. Therefore the formation of
the Cech nerve is functorial in Sch/S.

For the rest of our examples, we look for adjoint pairs of functors in order to
produce canonical resolutions.

Example 3.2 (Godement resolution). Let X be a topological space. Let us denote
by Xdisc the discrete topological space with the same underlying set as X. There
is a canonical continuous map f : Xdisc −→ X. Let Sh(X) (resp. Sh(Xdisc))
denote the category of sheaves of abelian groups on X (resp. Xdisc). The con-
tinuous map f induces a pair of additive functors f−1 : Sh(X) −→ Sh(Xdisc)
and f∗ : Sh(Xdisc) −→ Sh(X). For any sheaf F ∈ Sh(X), we obtain a canon-
ical cosimplicial resolution Canf∗f−1(F). We will let MCanf∗f−1(F) denote the
associated Moore complex, as in Example 2.7.

We claim that MCanf∗f−1(F) is exact. Notice that it suffices to check that
f−1MCanf∗f−1(F) is acyclic, because exactness can be checked at the level of
stalks. But f−1MCanf∗f−1(F) = M f−1 ◦ Canf∗f−1(F). By Proposition 2.9, the
cosimplicial set f−1 ◦ Canf∗f−1(F) is split. Therefore its Moore complex M f−1 ◦
Canf∗f−1(F) is acyclic by Example 2.7. Hence MCanf∗f−1(F) is a resolution of
F .

MCanf∗f−1(F) : 0→ F → f∗f
−1F → (f∗f

−1)2F → ...

All sheaves on Xdisc are flasque. Since f∗ preserves flasque sheaves, we see
that the image of f∗ consists of flasque sheaves. In particular MCanf∗f−1(F) is a
functorial resolution of F by flasque sheaves.

Another example is the concept of canonical free resolutions. Let D be a
category of algebraic objects. It is usually the case that there is a natural forgetful
functor U : D → C into a category of algebraic objects with less structure. In such
situations, there is often a left adjoint functor F : C −→ D given by some kind of
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free object construction. Let D be an object of D. We get a functorial resolution
CanFU(D) by free objects

CanFU(D) : ... (FU)3(D) −→−→
−→

(FU)2(D) −→−→ (FU)(D) −→ D

Proposition 1.9 provides a good source of fogertful/free adjunctions. Let (C,⊗)
be a strict monoidal category. Fix a monoid (M, e,m) in C. Recall that there is
an adjunction FM : C −⇀↽− Alg

M
:UM . For any M -algebra A, we obtain a canonical

simplicial resolution by free M -algebras

CanFMUM
(A) : ... (M)⊗3 ⊗ A −→−→

−→
(M)⊗2 ⊗ A −→−→M ⊗ A −→ A

Example 3.3 (Bar Complex). Let k be a commutative ring. Set C = k −Mod
to be the category of k-modules. It is a (nonstrict) monoidal category via the
tensor product ⊗k. A monoid M in (k −Mod, ⊗k) is the same as an associative
unital algebra over k. The category of M-algebras Alg

M
is the category of left

modules over M . Let V be a left M-module. By taking the Moore complex of the
corresponding agumented simplicial set, we obtain a free resolution of M-modules

...M⊗3 ⊗k V −→M⊗2 ⊗k V −→M ⊗k V −→ V

Proposition 2.10 implies that this is an exact complex of k-modules. This of
course also implies that it is an exact complex of M-modules (the forget functor
UM is “faithfully-exact”).

Let G be a group. As a special case of Example 3.3 we can let k be a field and
M = k[G] be the group algebra of G. We then recover the canonical resolution
that computes group cohomology.
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Birkhäuser Classics. Birkhäuser Verlag, Basel, 2009. Reprint of the 1999
edition [MR1711612].

[MB] Robert Raphael Michael Barr, John Kennison. Contractible simplicial
objects. Comment.Math.Univ.Carolin. 60,4 (2019) 473–495.

[nLa] nLab: bar construction. https://www.ncatlab.org/nlab/show/bar+

construction. Version 29.

[Rie14] Emily Riehl. Categorical homotopy theory, volume 24 of New Mathematical
Monographs. Cambridge University Press, Cambridge, 2014.

8

https://www.ncatlab.org/nlab/show/bar+construction
https://www.ncatlab.org/nlab/show/bar+construction

	Monoidal categories and monoids
	Resolutions
	Examples

