Листок 4. Фундаментальные группы

12 марта 2012 г.

Определение. Путем в топологическом пространстве X называется отображение $\gamma: I \to X$. Петлей с началом в точке $p \in X$ называется такой путь, что $\gamma(0) = \gamma(1) = p$. Произведением петель γ_1 и γ_2 называется петля $\gamma = \gamma_1 \circ \gamma_2$ такая, что

$$\gamma(t) = \begin{cases} \gamma_1(2t), & 0 \le t \le \frac{1}{2} \\ \gamma_2(1 - 2t), & \frac{1}{2} \le t \le 1 \end{cases}$$

Пути (и, соответственно, петли) называются гомотопными, если существует соединяющая их гомотопия F, причем $F|_{\{0\}\times I}\equiv {\rm const},\, F|_{\{1\}\times I}\equiv {\rm const}.$

Задача 1. Докажите, что гомотопность путей является отношением эквивалентности. Множество классов эквивалентности петель с началом в точке p обозначается $\pi_1(X, p)$.

Задача 2. Докажите, что если X — выпуклое множество в \mathbb{R}^n , то $\pi_1(X,p)$ состоит из одного элемента.

Задача 3. Докажите, что если $\gamma_1 \sim \gamma_1'$, $\gamma_2 \sim \gamma_2'$, то $\gamma_1 \circ \gamma_2 \sim \gamma_1' \circ \gamma_2'$. Из предыдущей задачи следует, что умножение петель порождает умножение на множестве $\pi_1(X,p)$.

Задача 4. Покажите, что $\pi_1(X,p)$ является группой относительно описанного умножения.

Задача 5. Покажите, что если существует путь между точками $p,q \in X$, то группы $\pi_1(X,p)$ и $\pi_1(X,q)$ изоморфны. Таким образом, в случае линейно связного X можно не указывать точку p и писать просто $\pi_1(X)$ — ϕ ундаментальная группа пространства X.

Определение. Пусть $f: X \to Y$ — такое отображение, что f(p) = q. Тогда отображение $f_*: \pi_1(Y,q) \to \pi_1(X,p), [\gamma] \mapsto [f \circ \gamma]$ называется *отображением*, индуцированным f.

Задача 6. Докажите, что отображение f_* корректно определено (не зависит от выбора преедставителя класса эквивалентности) и является гомоморфизмом групп.

Задача 7. Докажите, что если отображения f_0 и f_1 гомотопны, причем $f_t(p) = q \quad \forall t$, то $(f_0)_* = (f_1)_*$.

Задача 8. Обобщение предыдущей задачи. Пусть f_0 и f_1 гомотопны, причем $\gamma(t) = f_t(p)$ — петля, которую в процессе гомотопии описывает образ точки p. Тогда для произвольного элемента $\tau \in \pi_1(Y,q)$ верно равенство $(f_1)_*(\tau) = [\gamma]^{-1}(f_0)_*(\tau)[\gamma]$.

Задача 9. Выведите из предыдущих задач, что фундаментальные группы гомотопически эквивалентных пространств изоморфны.

Задача 10. Пусть X — линейно связное топологическое пространство. Показать, что множество классов гомотопии отображений $S^1 \to X$ есть множество классов сопряженных элементов в $\pi_1(X)$.