Symmetries of a cube. Group actions

Sasha Patotski

Cornell University

ap744@cornell.edu

December 1, 2015

Let G, H be two groups. Define the **product** $G \times H$ of group G, H to be the set of all pairs (g, h) with $g \in G, h \in H$ and with operation * on it given by

$$(g,h)*(g',h'):=(gg',hh')$$

- $(G \times H, *)$ is again a group.
- The subsets $G \times \{e\} = \{(g, e) \mid g \in G\}$ and $\{e\} \times H$ are two subgroups of $G \times H$, isomorphic to G and H respectively.
- The two subgroups commute with each other.

Let G be a group, and $H, K \subseteq G$ be two subgroups satisfying the following three properties:

- $\bullet H \cap K = \{e\};$
- elements of H commute with elements of K, i.e. hk = kh for any h ∈ H, k ∈ K;

• G = HK, i.e. any g can be represented as g = hk with $h \in H, k \in K$. Then $G \simeq H \times K$.

The group G of symmetries of a cube is isomorphic to $S_4 \times \mathbb{Z}/2$.

The group G of symmetries of a cube is isomorphic to $S_4 \times \mathbb{Z}/2$.

• Note: there is an obvious **injective** homomorphism $G \rightarrow S_8$ sending a symmetry to the corresponding permutation of vertices.

The group G of symmetries of a cube is isomorphic to $S_4 \times \mathbb{Z}/2$.

- Note: there is an obvious **injective** homomorphism $G \rightarrow S_8$ sending a symmetry to the corresponding permutation of vertices.
- There are |G| = 48 symmetries.

• Consider the subgroup $R \subseteq G$ of **rotational** symmetries.

- Consider the subgroup $R \subseteq G$ of **rotational** symmetries.
- Define s ∈ G to be the symmetry sending x → -x for each vertex x,
 i.e. s is the symmetry w.r.t. the center of the cube.

- Consider the subgroup $R \subseteq G$ of **rotational** symmetries.
- Define s ∈ G to be the symmetry sending x → -x for each vertex x, i.e. s is the symmetry w.r.t. the center of the cube.
- Element s is not a rotational symmetry.

- Consider the subgroup $R \subseteq G$ of **rotational** symmetries.
- Define s ∈ G to be the symmetry sending x → -x for each vertex x, i.e. s is the symmetry w.r.t. the center of the cube.
- Element *s* is not a rotational symmetry.
- There is a **surjective** homomorphism from R to S_4 : consider how elements of R permute the four longest diagonals of the cube.

- Consider the subgroup $R \subseteq G$ of **rotational** symmetries.
- Define s ∈ G to be the symmetry sending x → -x for each vertex x, i.e. s is the symmetry w.r.t. the center of the cube.
- Element s is not a rotational symmetry.
- There is a **surjective** homomorphism from R to S_4 : consider how elements of R permute the four longest diagonals of the cube.
- This homomorphism must be injective, and so $R \simeq S_4$.
- Prove that S = {id, s} ≃ Z/2 is a subgroup of G commuting with all elements of R.

- Consider the subgroup $R \subseteq G$ of **rotational** symmetries.
- Define $s \in G$ to be the symmetry sending $x \mapsto -x$ for each vertex x, i.e. *s* is the symmetry w.r.t. the center of the cube.
- Element s is not a rotational symmetry.
- There is a **surjective** homomorphism from R to S_4 : consider how elements of R permute the four longest diagonals of the cube.
- This homomorphism must be injective, and so $R \simeq S_4$.
- Prove that $S = \{id, s\} \simeq \mathbb{Z}/2$ is a subgroup of G commuting with all elements of R.
- By the order consideration, G = RS, and so $G \simeq R \times S$ by the previous theorem.

Let G be a group and X be a set. An **action** of G on X is a homomorphism $G \to Bij(X)$.

• Equivalently, action of G on X is a map $G \times X \to X$, $(g, x) \mapsto g.x$ such that g.(h.x) = (gh).x and e.x = x.

- Equivalently, action of G on X is a map $G \times X \to X$, $(g, x) \mapsto g.x$ such that g.(h.x) = (gh).x and e.x = x.
- If G is a group of transformation of X, then G naturally acts on X.

- Equivalently, action of G on X is a map $G \times X \to X$, $(g, x) \mapsto g.x$ such that g.(h.x) = (gh).x and e.x = x.
- If G is a group of transformation of X, then G naturally acts on X.
- If φ: H→ G is a homomorphism, then if G acts on X, H also acts on X via the composition H → G → Bij(X)

- Equivalently, action of G on X is a map $G \times X \to X$, $(g, x) \mapsto g.x$ such that g.(h.x) = (gh).x and e.x = x.
- If G is a group of transformation of X, then G naturally acts on X.
- If φ: H → G is a homomorphism, then if G acts on X, H also acts on X via the composition H → G → Bij(X)
- In particular any subgroup of G also acts on whatever G acts on.

For any group G and any set X there is always the trivial action g.x = x, for any g ∈ G, x ∈ X.

- For any group G and any set X there is always the trivial action g.x = x, for any g ∈ G, x ∈ X.
- The symmetric group S_n acts on the set $X = \{1, 2, ..., n\}$ by permuting the numbers.

- For any group G and any set X there is always the trivial action g.x = x, for any g ∈ G, x ∈ X.
- The symmetric group S_n acts on the set $X = \{1, 2, ..., n\}$ by permuting the numbers.
- S_4 acts on a regular tetrahedron.

- For any group G and any set X there is always the trivial action g.x = x, for any g ∈ G, x ∈ X.
- The symmetric group S_n acts on the set $X = \{1, 2, ..., n\}$ by permuting the numbers.
- S_4 acts on a regular tetrahedron.
- $S_4 \times \mathbb{Z}/2$ acts on a cube. S_4 acts on it by rotational symmetries.

- For any group G and any set X there is always the trivial action g.x = x, for any g ∈ G, x ∈ X.
- The symmetric group S_n acts on the set $X = \{1, 2, ..., n\}$ by permuting the numbers.
- S_4 acts on a regular tetrahedron.
- $S_4 \times \mathbb{Z}/2$ acts on a cube. S_4 acts on it by rotational symmetries.
- ℤ/2 and ℤ/3 are naturally subgroups of ℤ/6, and so they act on a regular hexagon by rotations. What is this action?

- For any group G and any set X there is always the trivial action g.x = x, for any g ∈ G, x ∈ X.
- The symmetric group S_n acts on the set $X = \{1, 2, ..., n\}$ by permuting the numbers.
- S_4 acts on a regular tetrahedron.
- $S_4 \times \mathbb{Z}/2$ acts on a cube. S_4 acts on it by rotational symmetries.
- $\mathbb{Z}/2$ and $\mathbb{Z}/3$ are naturally subgroups of $\mathbb{Z}/6$, and so they act on a regular hexagon by rotations. What is this action?
- The group \mathbb{R} acts on the line \mathbb{R} by translation, i.e. for $g \in \mathbb{R}$ and $v \in \mathbb{R}$, g.v := g + v, the addition of numbers.

- For any group G and any set X there is always the trivial action g.x = x, for any g ∈ G, x ∈ X.
- The symmetric group S_n acts on the set $X = \{1, 2, ..., n\}$ by permuting the numbers.
- S_4 acts on a regular tetrahedron.
- $S_4 \times \mathbb{Z}/2$ acts on a cube. S_4 acts on it by rotational symmetries.
- $\mathbb{Z}/2$ and $\mathbb{Z}/3$ are naturally subgroups of $\mathbb{Z}/6$, and so they act on a regular hexagon by rotations. What is this action?
- The group \mathbb{R} acts on the line \mathbb{R} by translation, i.e. for $g \in \mathbb{R}$ and $v \in \mathbb{R}$, g.v := g + v, the addition of numbers.
- The group \mathbb{R} acts on the circle $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ by $x.z := e^{ix}z$. This gives a homomorphism $\mathbb{R} \to Bij(S^1)$. What is its kernel?

- 4 同 6 4 日 6 4 日 6

- For any group G and any set X there is always the trivial action g.x = x, for any g ∈ G, x ∈ X.
- The symmetric group S_n acts on the set $X = \{1, 2, ..., n\}$ by permuting the numbers.
- S_4 acts on a regular tetrahedron.
- $S_4 \times \mathbb{Z}/2$ acts on a cube. S_4 acts on it by rotational symmetries.
- $\mathbb{Z}/2$ and $\mathbb{Z}/3$ are naturally subgroups of $\mathbb{Z}/6$, and so they act on a regular hexagon by rotations. What is this action?
- The group \mathbb{R} acts on the line \mathbb{R} by translation, i.e. for $g \in \mathbb{R}$ and $v \in \mathbb{R}$, g.v := g + v, the addition of numbers.
- The group \mathbb{R} acts on the circle $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ by $x.z := e^{ix}z$. This gives a homomorphism $\mathbb{R} \to Bij(S^1)$. What is its kernel?
- Note that the circle S¹ is itself a group. It acts on R² by rotations. In other words, e^{ix} rotates ℝ² around the origin by the angle x counter-clockwise.