Symmetries of a cube. Group actions

Sasha Patotski

Cornell University
ap744@cornell.edu
December 1, 2015

Last time

Definition

Let G, H be two groups. Define the product $G \times H$ of group G, H to be the set of all pairs (g, h) with $g \in G, h \in H$ and with operation $*$ on it given by

$$
(g, h) *\left(g^{\prime}, h^{\prime}\right):=\left(g g^{\prime}, h h^{\prime}\right)
$$

- $(G \times H, *)$ is again a group.
- The subsets $G \times\{e\}=\{(g, e) \mid g \in G\}$ and $\{e\} \times H$ are two subgroups of $G \times H$, isomorphic to G and H respectively.
- The two subgroups commute with each other.

Product of groups

Theorem

Let G be a group, and $H, K \subseteq G$ be two subgroups satisfying the following three properties:
(1) $H \cap K=\{e\}$;
(2) elements of H commute with elements of K, i.e. $h k=k h$ for any $h \in H, k \in K$;
(3) $G=H K$, i.e. any g can be represented as $g=h k$ with $h \in H, k \in K$. Then $G \simeq H \times K$.

Symmetries of a cube

Theorem

The group G of symmetries of a cube is isomorphic to $S_{4} \times \mathbb{Z} / 2$.

Symmetries of a cube

Theorem

The group G of symmetries of a cube is isomorphic to $S_{4} \times \mathbb{Z} / 2$.

- Note: there is an obvious injective homomorphism $G \rightarrow S_{8}$ sending a symmetry to the corresponding permutation of vertices.

Symmetries of a cube

Theorem

The group G of symmetries of a cube is isomorphic to $S_{4} \times \mathbb{Z} / 2$.

- Note: there is an obvious injective homomorphism $G \rightarrow S_{8}$ sending a symmetry to the corresponding permutation of vertices.
- There are $|G|=48$ symmetries.

Symmetries of a cube

- Consider the subgroup $R \subseteq G$ of rotational symmetries.

Symmetries of a cube

- Consider the subgroup $R \subseteq G$ of rotational symmetries.
- Define $s \in G$ to be the symmetry sending $x \mapsto-x$ for each vertex x, i.e. s is the symmetry w.r.t. the center of the cube.

Symmetries of a cube

- Consider the subgroup $R \subseteq G$ of rotational symmetries.
- Define $s \in G$ to be the symmetry sending $x \mapsto-x$ for each vertex x, i.e. s is the symmetry w.r.t. the center of the cube.
- Element s is not a rotational symmetry.

Symmetries of a cube

- Consider the subgroup $R \subseteq G$ of rotational symmetries.
- Define $s \in G$ to be the symmetry sending $x \mapsto-x$ for each vertex x, i.e. s is the symmetry w.r.t. the center of the cube.
- Element s is not a rotational symmetry.
- There is a surjective homomorphism from R to S_{4} : consider how elements of R permute the four longest diagonals of the cube.

Symmetries of a cube

- Consider the subgroup $R \subseteq G$ of rotational symmetries.
- Define $s \in G$ to be the symmetry sending $x \mapsto-x$ for each vertex x, i.e. s is the symmetry w.r.t. the center of the cube.
- Element s is not a rotational symmetry.
- There is a surjective homomorphism from R to S_{4} : consider how elements of R permute the four longest diagonals of the cube.
- This homomorphism must be injective, and so $R \simeq S_{4}$.
- Prove that $S=\{i d, s\} \simeq \mathbb{Z} / 2$ is a subgroup of G commuting with all elements of R.

Symmetries of a cube

- Consider the subgroup $R \subseteq G$ of rotational symmetries.
- Define $s \in G$ to be the symmetry sending $x \mapsto-x$ for each vertex x, i.e. s is the symmetry w.r.t. the center of the cube.
- Element s is not a rotational symmetry.
- There is a surjective homomorphism from R to S_{4} : consider how elements of R permute the four longest diagonals of the cube.
- This homomorphism must be injective, and so $R \simeq S_{4}$.
- Prove that $S=\{i d, s\} \simeq \mathbb{Z} / 2$ is a subgroup of G commuting with all elements of R.
- By the order consideration, $G=R S$, and so $G \simeq R \times S$ by the previous theorem.

Group action definition

Definition

Let G be a group and X be a set. An action of G on X is a homomorphism $G \rightarrow \operatorname{Bij}(X)$.

Group action definition

Definition

Let G be a group and X be a set. An action of G on X is a homomorphism $G \rightarrow \operatorname{Bij}(X)$.

- Equivalently, action of G on X is a map $G \times X \rightarrow X,(g, x) \mapsto g . x$ such that g. $(h \cdot x)=(g h) \cdot x$ and $e \cdot x=x$.

Group action definition

Definition

Let G be a group and X be a set. An action of G on X is a homomorphism $G \rightarrow \operatorname{Bij}(X)$.

- Equivalently, action of G on X is a map $G \times X \rightarrow X,(g, x) \mapsto g . x$ such that $g .(h \cdot x)=(g h) \cdot x$ and $e \cdot x=x$.
- If G is a group of transformation of X, then G naturally acts on X.

Group action definition

Definition

Let G be a group and X be a set. An action of G on X is a homomorphism $G \rightarrow \operatorname{Bij}(X)$.

- Equivalently, action of G on X is a map $G \times X \rightarrow X,(g, x) \mapsto g . x$ such that $g .(h . x)=(g h) . x$ and $e . x=x$.
- If G is a group of transformation of X, then G naturally acts on X.
- If $\varphi: H \rightarrow G$ is a homomorphism, then if G acts on X, H also acts on X via the composition $H \xrightarrow{\varphi} G \rightarrow \operatorname{Bij}(X)$

Group action definition

Definition

Let G be a group and X be a set. An action of G on X is a homomorphism $G \rightarrow \operatorname{Bij}(X)$.

- Equivalently, action of G on X is a map $G \times X \rightarrow X,(g, x) \mapsto g . x$ such that $g .(h \cdot x)=(g h) \cdot x$ and $e \cdot x=x$.
- If G is a group of transformation of X, then G naturally acts on X.
- If $\varphi: H \rightarrow G$ is a homomorphism, then if G acts on X, H also acts on X via the composition $H \xrightarrow{\varphi} G \rightarrow B i j(X)$
- In particular any subgroup of G also acts on whatever G acts on.

Examples

- For any group G and any set X there is always the trivial action $g . x=x$, for any $g \in G, x \in X$.

Examples

- For any group G and any set X there is always the trivial action $g . x=x$, for any $g \in G, x \in X$.
- The symmetric group S_{n} acts on the set $X=\{1,2, \ldots, n\}$ by permuting the numbers.

Examples

- For any group G and any set X there is always the trivial action $g . x=x$, for any $g \in G, x \in X$.
- The symmetric group S_{n} acts on the set $X=\{1,2, \ldots, n\}$ by permuting the numbers.
- S_{4} acts on a regular tetrahedron.

Examples

- For any group G and any set X there is always the trivial action $g \cdot x=x$, for any $g \in G, x \in X$.
- The symmetric group S_{n} acts on the set $X=\{1,2, \ldots, n\}$ by permuting the numbers.
- S_{4} acts on a regular tetrahedron.
- $S_{4} \times \mathbb{Z} / 2$ acts on a cube. S_{4} acts on it by rotational symmetries.

Examples

- For any group G and any set X there is always the trivial action $g \cdot x=x$, for any $g \in G, x \in X$.
- The symmetric group S_{n} acts on the set $X=\{1,2, \ldots, n\}$ by permuting the numbers.
- S_{4} acts on a regular tetrahedron.
- $S_{4} \times \mathbb{Z} / 2$ acts on a cube. S_{4} acts on it by rotational symmetries.
- $\mathbb{Z} / 2$ and $\mathbb{Z} / 3$ are naturally subgroups of $\mathbb{Z} / 6$, and so they act on a regular hexagon by rotations. What is this action?

Examples

- For any group G and any set X there is always the trivial action $g . x=x$, for any $g \in G, x \in X$.
- The symmetric group S_{n} acts on the set $X=\{1,2, \ldots, n\}$ by permuting the numbers.
- S_{4} acts on a regular tetrahedron.
- $S_{4} \times \mathbb{Z} / 2$ acts on a cube. S_{4} acts on it by rotational symmetries.
- $\mathbb{Z} / 2$ and $\mathbb{Z} / 3$ are naturally subgroups of $\mathbb{Z} / 6$, and so they act on a regular hexagon by rotations. What is this action?
- The group \mathbb{R} acts on the line \mathbb{R} by translation, i.e. for $g \in \mathbb{R}$ and $v \in \mathbb{R}, g . v:=g+v$, the addition of numbers.

Examples

- For any group G and any set X there is always the trivial action $g . x=x$, for any $g \in G, x \in X$.
- The symmetric group S_{n} acts on the set $X=\{1,2, \ldots, n\}$ by permuting the numbers.
- S_{4} acts on a regular tetrahedron.
- $S_{4} \times \mathbb{Z} / 2$ acts on a cube. S_{4} acts on it by rotational symmetries.
- $\mathbb{Z} / 2$ and $\mathbb{Z} / 3$ are naturally subgroups of $\mathbb{Z} / 6$, and so they act on a regular hexagon by rotations. What is this action?
- The group \mathbb{R} acts on the line \mathbb{R} by translation, i.e. for $g \in \mathbb{R}$ and $v \in \mathbb{R}, g . v:=g+v$, the addition of numbers.
- The group \mathbb{R} acts on the circle $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ by $x . z:=e^{i x} z$. This gives a homomorphism $\mathbb{R} \rightarrow \operatorname{Bij}\left(S^{1}\right)$. What is its kernel?

Examples

- For any group G and any set X there is always the trivial action $g . x=x$, for any $g \in G, x \in X$.
- The symmetric group S_{n} acts on the set $X=\{1,2, \ldots, n\}$ by permuting the numbers.
- S_{4} acts on a regular tetrahedron.
- $S_{4} \times \mathbb{Z} / 2$ acts on a cube. S_{4} acts on it by rotational symmetries.
- $\mathbb{Z} / 2$ and $\mathbb{Z} / 3$ are naturally subgroups of $\mathbb{Z} / 6$, and so they act on a regular hexagon by rotations. What is this action?
- The group \mathbb{R} acts on the line \mathbb{R} by translation, i.e. for $g \in \mathbb{R}$ and $v \in \mathbb{R}, g . v:=g+v$, the addition of numbers.
- The group \mathbb{R} acts on the circle $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ by $x . z:=e^{i x} z$. This gives a homomorphism $\mathbb{R} \rightarrow \operatorname{Bij}\left(S^{1}\right)$. What is its kernel?
- Note that the circle S^{1} is itself a group. It acts on \mathbf{R}^{2} by rotations. In other words, $e^{i x}$ rotates \mathbb{R}^{2} around the origin by the angle x counter-clockwise.

