Consider a function f whose domain is the set D.

- f has a <u>local maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in I$, where I is some open interval in D containing c.
- f has a <u>local minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in I$, where I is some open interval in D containing c.

a.k.a. relative extrema

Global Extrema

Consider a function f whose domain is the set D.

- *f* has a <u>absolute maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in D$.
- *f* has a <u>absolute minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in D$.

a.k.a. absolute extrema

Consider a function f whose domain is the set D.

- f has a <u>local maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in I$, where I is some open interval in D containing c.
- f has a <u>local minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in I$, where I is some open interval in D containing c.

a.k.a. relative extrema

Global Extrema

Consider a function f whose domain is the set D.

- *f* has a <u>absolute maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in D$.
- *f* has a <u>absolute minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in D$.

a.k.a. absolute extrema

Consider a function f whose domain is the set D.

- f has a <u>local maximum</u> at a point $c \in D$ if $f(x) \le f(c)$ for all $x \in I$, where I is some open interval in D containing c.
- f has a <u>local minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in I$, where I is some open interval in D containing c.

a.k.a. relative extrema

Global Extrema

Consider a function f whose domain is the set D.

- *f* has a <u>absolute maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in D$.
- f has a <u>absolute minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in D$.

a.k.a. absolute extrema

Consider a function f whose domain is the set D.

- *f* has a <u>local maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in I$, where *I* is some open interval in *D* containing *c*.
- f has a <u>local minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in I$, where I is some open interval in D containing c.

a.k.a. relative extrema

Global Extrema

Consider a function f whose domain is the set D.

- *f* has a <u>absolute maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in D$.
- *f* has a <u>absolute minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in D$.

a.k.a. absolute extrema

Consider a function f whose domain is the set D.

- *f* has a <u>local maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in I$, where *I* is some open interval in *D* containing *c*.
- f has a <u>local minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in I$, where I is some open interval in D containing c.

a.k.a. relative extrema

Global Extrema

Consider a function f whose domain is the set D.

- *f* has a <u>absolute maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in D$.
- f has a <u>absolute minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in D$.

a.k.a. absolute extrema

Consider a function f whose domain is the set D.

- *f* has a <u>local maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in I$, where *I* is some open interval in *D* containing *c*.
- f has a <u>local minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in I$, where I is some open interval in D containing c.

a.k.a. relative extrema

Global Extrema

Consider a function f whose domain is the set D.

- *f* has a <u>absolute maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in D$.
- *f* has a <u>absolute minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in D$.

a.k.a. absolute extrema

Consider a function f whose domain is the set D.

- *f* has a <u>local maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in I$, where *I* is some open interval in *D* containing *c*.
- f has a <u>local minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in I$, where I is some open interval in D containing c.

a.k.a. relative extrema

Global Extrema

Consider a function f whose domain is the set D.

- *f* has a <u>absolute maximum</u> at a point $c \in D$ if $f(x) \leq f(c)$ for all $x \in D$.
- *f* has a <u>absolute minimum</u> at a point $c \in D$ if $f(x) \ge f(c)$ for all $x \in D$.

a.k.a. absolute extrema

Remarks

- If f obtains either a local or global maximum at c, then f(c) is the maximum value.
- If *f* has a global extrema at *c*, then it also has a local extrema at *c*. The converse is not true.
- There may be more than one value of *c* at which a global extrema is obtained.

Remarks

- If f obtains either a local or global maximum at c, then f(c) is the maximum value.
- If *f* has a global extrema at *c*, then it also has a local extrema at *c*. The converse is not true.
- There may be more than one value of *c* at which a global extrema is obtained.

Remarks

- If f obtains either a local or global maximum at c, then f(c) is the maximum value.
- If *f* has a global extrema at *c*, then it also has a local extrema at *c*. The converse is not true.
- There may be more than one value of *c* at which a global extrema is obtained.

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

If f is continuous on a closed interval [a, b], then f attains both a global maximum value, M, and an global minimum value, m, in [a, b].

This is another existence theorem.

Theorem says: if *f* is continuous on [a, b], there exists numbers x_M and x_m in [a, b] such that $f(x_M) = M$ and $f(x_m) = m$, and $m \le f(x) \le M$ for all other $x \in [a, b]$.

If f is continuous on a closed interval [a, b], then f attains both a global maximum value, M, and an global minimum value, m, in [a, b].

This is another existence theorem.

Theorem says: if *f* is continuous on [a, b], there exists numbers x_M and x_m in [a, b] such that $f(x_M) = M$ and $f(x_m) = m$, and $m \le f(x) \le M$ for all other $x \in [a, b]$.

If f is continuous on a closed interval [a, b], then f attains both a global maximum value, M, and an global minimum value, m, in [a, b].

This is another existence theorem.

Theorem says: if f is continuous on [a, b], there exists numbers x_M and x_m in [a, b] such that $f(x_M) = M$ and $f(x_m) = m$, and $m \le f(x) \le M$ for all other $x \in [a, b]$.

・ロト ・ 日本 ・ 日本 ・ 日本 ・ 日本

If f is continuous on a closed interval [a, b], then f attains both a global maximum value, M, and an global minimum value, m, in [a, b].

This is another existence theorem.

Theorem says: if *f* is continuous on [a, b], there exists numbers x_M and x_m in [a, b] such that $f(x_M) = M$ and $f(x_m) = m$, and $m \le f(x) \le M$ for all other $x \in [a, b]$.

・ロン ・四 と ・ ヨン ・ ヨ

Extreme Value Theorem

◆ロ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Extreme Value Theorem

Ex 1b $g(x) = \frac{1}{|x|}$

Finding Global Extrema

If f is continuous on a closed interval [a, b], then to find its global extrema:

- Find all critical points of f contained in (a, b).
- 2 Evaluate f at each critical point.
- Solution Evaluate f at the endpoints. (i.e. find f(a) and f(b).)
- The largest value of f(x) from steps 2 & 3 is the global maximum of f on [a, b], and the smallest of the values is the global minimum.

・ロン ・四 ・ ・ ヨン ・ ヨン - ヨ

Visualizing example 3:

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Increasing/ Decreasing

Lemma 4.3.3

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then,

- if f'(x) > 0 at *each* point $x \in (a, b)$, then *f* is increasing on [a, b].
- if f'(x) < 0 at *each* point $x \in (a, b)$, then f is decreasing on [a, b].

Seems reasonable- we'll prove this fact next lecture.

イロト イポト イヨト イヨト

Increasing/ Decreasing

Lemma 4.3.3

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then,

- if f'(x) > 0 at *each* point $x \in (a, b)$, then f is increasing on [a, b].
- if f'(x) < 0 at *each* point $x \in (a, b)$, then *f* is decreasing on [a, b].

Seems reasonable- we'll prove this fact next lecture.

Increasing/ Decreasing

Lemma 4.3.3

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then,

- if f'(x) > 0 at *each* point $x \in (a, b)$, then f is increasing on [a, b].
- if f'(x) < 0 at *each* point $x \in (a, b)$, then f is decreasing on [a, b].

Seems reasonable- we'll prove this fact next lecture.

First Derivative Test

Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval I containing c except possibly at c itself. Moving across the interval I from left to right.

- if f'(x) changes from negative to positive at c, then f has a local minimum at c,
- if f'(x) changes from positive to negative at c, then f has a local maximum at c,
- if f'(x) does not change sign at c, then f has no local extremum at c.

First Derivative Test

Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval I containing c except possibly at c itself. Moving across the interval I from left to right.

- if f'(x) changes from negative to positive at c, then f has a local minimum at c,
- if f'(x) changes from positive to negative at c, then f has a local maximum at c,
- if f'(x) does not change sign at c, then f has no local extremum at c.

First Derivative Test

Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval I containing c except possibly at c itself. Moving across the interval I from left to right.

- if f'(x) changes from negative to positive at c, then f has a local minimum at c,
- if f'(x) changes from positive to negative at c, then f has a local maximum at c,
- if f'(x) does not change sign at c, then f has no local extremum at c.

First Derivative Test

Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval I containing c except possibly at c itself. Moving across the interval I from left to right.

- if f'(x) changes from negative to positive at c, then f has a local minimum at c,
- if f'(x) changes from positive to negative at c, then f has a local maximum at c,
- if f'(x) does not change sign at c, then f has no local extremum at c.

Consider $f(x) = 3x^4 - 8x^3 + 5$.

$$f'(x) = 12x^3 - 24x^2 = 12x^2(x-2)$$

so the critical points are x = 0 & x = 2, which are both Type I.

a) Does *f* have local extrema at either of these points?

b) Find the global extrema of f on [-1, 3].

<ロト < 回 > < 回 > < 回 > < 回 > <</p>

Consider $f(x) = 3x^4 - 8x^3 + 5$.

$$f'(x) = 12x^3 - 24x^2 = 12x^2(x-2)$$

so the critical points are x = 0 & x = 2, which are both Type I.

a) Does *f* have local extrema at either of these points?

b) Find the global extrema of f on [-1, 3].

Consider $f(x) = 3x^4 - 8x^3 + 5$.

$$f'(x) = 12x^3 - 24x^2 = 12x^2(x-2)$$

so the critical points are x = 0 & x = 2, which are both Type I.

a) Does f have local extrema at either of these points?

b) Find the global extrema of f on [-1, 3].

Consider $f(x) = 3x^4 - 8x^3 + 5$.

$$f'(x) = 12x^3 - 24x^2 = 12x^2(x-2)$$

so the critical points are x = 0 & x = 2, which are both Type I.

a) Does f have local extrema at either of these points?

b) Find the global extrema of f on [-1, 3].