Rolle's Theorem

Theorem 4.2.3

Suppose that f(x) is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), the there is at least one number $c \in (a, b)$ at which f'(c) = 0.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Rolle's Theorem

Theorem 4.2.3

Suppose that f(x) is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), the there is at least one number $c \in (a, b)$ at which f'(c) = 0.

Remarks

- This is another existence theorem.
- If the slope of of the secant line between (a, f(a)) and (b, f(b)) is zero, there must be a point c ∈ (a, b) at which the tangent line to f is horizontal.
- If the average rate of change over [a, b] is zero, then the instantaneous rate of change must be 0 at some point in (a, b).

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

Rolle's Theorem

Theorem 4.2.3

Suppose that f(x) is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), the there is at least one number $c \in (a, b)$ at which f'(c) = 0.

Remarks

- This is another existence theorem.
- If the slope of of the secant line between (a, f(a)) and (b, f(b)) is zero, there must be a point c ∈ (a, b) at which the tangent line to f is horizontal.
- If the average rate of change over [a, b] is zero, then the instantaneous rate of change must be 0 at some point in (a, b).

イロン 不得 とくほ とくほう 一日

Theorem 4.2.4

Suppose f(x) is continuous on [a, b] and differentiable on (a, b). There there is a least one point $c \in (a, b)$ at which

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

3/12

Theorem 4.2.4

Suppose f(x) is continuous on [a, b] and differentiable on (a, b). There there is a least one point $c \in (a, b)$ at which

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

• This is another existence theorem.

- If f(x) is continuous on [a, b] and differentiable on (a, b),
 - then there exists at least one point c ∈ (a, b) such that the slope of the tangent line at x = c is equal to the slope of the secant line which passes through (a, f(a)) and (b, f(b)).
 - then there exists at least one point in (a, b) such that the instantaneous rate of change of f(x) is equal to the average rate of change of f over the interval [a, b].

Theorem 4.2.4

Suppose f(x) is continuous on [a, b] and differentiable on (a, b). There there is a least one point $c \in (a, b)$ at which

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

- This is another existence theorem.
- If f(x) is continuous on [a, b] and differentiable on (a, b),
 - then there exists at least one point c ∈ (a, b) such that the slope of the tangent line at x = c is equal to the slope of the secant line which passes through (a,f(a)) and (b,f(b)).
 - then there exists at least one point in (a, b) such that the instantaneous rate of change of f(x) is equal to the average rate of change of f over the interval [a, b].

Theorem 4.2.4

Suppose f(x) is continuous on [a, b] and differentiable on (a, b). There there is a least one point $c \in (a, b)$ at which

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

- This is another existence theorem.
- If f(x) is continuous on [a, b] and differentiable on (a, b),
 - then there exists at least one point c ∈ (a, b) such that the slope of the tangent line at x = c is equal to the slope of the secant line which passes through (a,f(a)) and (b,f(b)).
 - then there exists at least one point in (a, b) such that the instantaneous rate of change of f(x) is equal to the average rate of change of f over the interval [a, b].

True or False?

If f(x) = |x|, then there is a point $c \in (-1, 2)$ such that

$$f'(c) = \frac{f(2) - f(-1)}{3}.$$

5/12

Exercise

True or False?

If f(x) = |x|, then there is a point $c \in (-1, 2)$ such that

$$f'(c) = \frac{f(2) - f(-1)}{3}$$

.

False

We know for all x < 0, f'(x) = -1, and for all x > 0, f'(x) = 1. Q: Why doesn't this contradict the Mean Value Theorem?

Exercise

True or False?

If f(x) = |x|, then there is a point $c \in (-1, 2)$ such that

$$f'(c) = \frac{f(2) - f(-1)}{3}$$

.

False

We know for all x < 0, f'(x) = -1, and for all x > 0, f'(x) = 1. Q: Why doesn't this contradict the Mean Value Theorem?

Exercise

True or False?

If f(x) = |x|, then there is a point $c \in (-1, 2)$ such that

$$f'(c) = \frac{f(2) - f(-1)}{3}$$

.

False

We know for all x < 0, f'(x) = -1, and for all x > 0, f'(x) = 1. **Q:** Why doesn't this contradict the Mean Value Theorem?

Corollary 1

If f'(x) = 0 for all $x \in (a, b)$, then there is a constant k such that

f(x) = k, for all $x \in (a, b)$.

Corollary 2

If f'(x) = g'(x) for all $x \in (a, b)$, then there exists a constant k such that f(x) - g(x) = k for all $x \in (a, b)$. That is f(x) = g(x) + k for all $x \in (a, b)$.

7/12

Corollary 1

If f'(x) = 0 for all $x \in (a, b)$, then there is a constant k such that

f(x) = k, for all $x \in (a, b)$.

Corollary 2

If f'(x) = g'(x) for all $x \in (a, b)$, then there exists a constant k such that f(x) - g(x) = k for all $x \in (a, b)$. That is f(x) = g(x) + k for all $x \in (a, b)$.

Corollary 1

If f'(x) = 0 for all $x \in (a, b)$, then there is a constant k such that

f(x) = k, for all $x \in (a, b)$.

Corollary 2

If f'(x) = g'(x) for all $x \in (a, b)$, then there exists a constant k such that f(x) - g(x) = k for all $x \in (a, b)$. That is f(x) = g(x) + k for all $x \in (a, b)$.

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

Corollary 4.3.3- Previously Presented as Lemma 4.3.3

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then,

- if f'(x) > 0 at *each* point $x \in (a, b)$, then f is increasing on [a, b].
- if f'(x) < 0 at *each* point $x \in (a, b)$, then f is decreasing on [a, b].

イロト イロト イヨト イヨト

Corollary 4.3.3- Previously Presented as Lemma 4.3.3

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then,

- if f'(x) > 0 at *each* point $x \in (a, b)$, then f is increasing on [a, b].
- if f'(x) < 0 at *each* point $x \in (a, b)$, then f is decreasing on [a, b].

Definitions:

A function is increasing on [a, b], if for any x_1 and x_2 with $a \le x_1 < x_2 \le b$

$$f(x_1) \leq f(x_2).$$

A function is decreasing on [a, b], if for any x_1 and x_2 with $a \le x_1 < x_2 \le b$

 $f(x_1) \ge f(x_2).$

・ロト ・ 日本 ・ 日本 ・ 日本 ・ 日本

Let *R* be the region between the two concentric circles with radii r_1 and r_2 , where $r_2 > r_1$. Let *A* be the area of the region *R*.

a) Draw a picture of the region and find an expression for A.

b) Why should we believe /how can we explain why the following statement is true?

There must be a number r such that the rectangle with width $2\pi r$ and height $r_2 - r_1$ has area exactly equal to A.

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

Let *R* be the region between the two concentric circles with radii r_1 and r_2 , where $r_2 > r_1$. Let *A* be the area of the region *R*.

a) Draw a picture of the region and find an expression for A.

b) Why should we believe /how can we explain why the following statement is true?

There must be a number r such that the rectangle with width $2\pi r$ and height $r_2 - r_1$ has area exactly equal to A.

イロト 不得 とくき とくき とうき

Let *R* be the region between the two concentric circles with radii r_1 and r_2 , where $r_2 > r_1$. Let *A* be the area of the region *R*.

a) Draw a picture of the region and find an expression for A.

b) Why should we believe /how can we explain why the following statement is true?

There must be a number r such that the rectangle with width $2\pi r$ and height $r_2 - r_1$ has area exactly equal to A.

イロト 不得 とくき とくき とうき

Example

Let *R* be the region between the two concentric circles with radii r_1 and r_2 , where $r_2 > r_1$. Let *A* be the area of the region *R*.

Why should we believe /how can we explain why the following statement is true?

There must be a number r such that the rectangle with width $2\pi r$ and height $r_2 - r_1$ has area exactly equal to A. That is, there is an r such that $2\pi r(r_2 - r_1) = \pi (r_2^2 - r_1^2)$.

Area of a circle with radius x: $A(x) = \pi x^2$.

- *A* is continuous for all *r*.
- *A* is differentiable for all *r*.

Work in pairs or groups of three. Turn in one sheet per group at the end of class.

1. Let *f* be a function which is continuous and differentiable at every real number. Show that if f(x) has at least two roots (that is at least two different values of *x* such that f(x) = 0), then f'(x) must have at least one root.

2. Suppose a sailboat travels 184 seamiles in a 24 hour period. Explain why at some point during this window of time the boat's speed must have exceeded 7.5 knots (seamiles per hour).

イロト 不得 とくき とくき とうき