Matched Pairs vs 2 Sample

Basic Simulation Model:

Sample Size n=10

Control Mean = mu, mu = 10

Test Mean = mu + tau, tau = 3

N1, N2, and N3 are standard normal.

No Selector

Summary statistics for Contr

Mean 10.417109

Numeric 10

StdDev 6.3010523

Control entries c[i] = mu + alpha N1[i] + beta N3[i]

Test entries t[i] = mu + tau + alpha N2[i] + beta N3[i]

alpha = 3, beta = 4

Summary statistics for Test

Mean 14.336579

Numeric 10

StdDev 6.1531286

Thus in the limit of large sample size:

Control and Test entry means differ by tau.

Each entry has 2 sources of error. One of them

follows N(0,alpha) and is independent of pairing.

The other follows N(0,beta) and is the same for

each element in a matched pair.

Paired t-Test of $\mu(1 - 2)$

Matched Pairs Result Using Natural Matchin

No Selector

Individual Alpha Level 0.10

Ho: $\mu(1-2) = 0$ Ha: $\mu(1-2) \neq 0$

Control - Test:

Test Ho: $\mu(Control-Test) = 0$ vs Ha: $\mu(Control-Test) \neq 0$

Mean of Paired Differences = -3.9194705 t-Statistic = -2.133 w/9 df

Reject Ho at Alpha = 0.10

p = 0.0617