Semisimple Lie Algebras Math 649, 2013 Root Systems

Dan Barbasch

April 9

REFERENCES: Bourbaki chapter 6, Humphreys chapter III

Simple Roots

Definition 1

A subset $\Pi \subset R$ is called *a base* if

- (I) Π is a basis of V
- (II) Any $\beta \in R$ can be written $\beta = \sum n_{\alpha}\alpha, n_{\alpha} \in \mathbb{Z}$, either all positive or all negative. The roots in Π are called simple.

Properties:

- **1** A root is called positive if all the $n_{\alpha} \geq 0$, negative if all the $n_{\alpha} \leq 0$. Then $R = R^+ \cup R^-$, $R^+ \cap R^- = \emptyset$. where R^{\pm} are the positive (negative) roots.
- ② If $\alpha, \beta \in R^+$, then $\alpha + \beta \in R^+$, or it is not a root.
- **3** We say $\alpha \leq \beta$ if $\beta \alpha \in R^+$.
- If $\alpha, \beta \in \Pi$, $\alpha \neq \beta$, then $(\alpha, \beta) \leq 0$ and $\alpha \beta$ is not a root.

Proof of (4)

Proof.

If $\gamma = \alpha - \beta$ is a root, either $\gamma \in R^+$, or $-\gamma \in R^+$. Either way, it violates (II).

Theorem 2

Every root system has a base.

Proof.

Let H_{α} be the hyperplane where $\check{\alpha}$ is zero. Let $0 \neq h_0 \in V \setminus \cup H_{\alpha}$.

Then

$$\check{\alpha}(h_0) \neq 0$$
 for all $\alpha \in R$. (1)

Let $R^+:=\{\alpha\mid \check{\alpha}(h_0)>0\}$. Then $R=R^+\coprod R^-$ where $R^-=-R^+$. We say $\alpha\in R^+$ is indecomposable if α cannot be written as

$$\alpha = \beta + \gamma \qquad \beta, \gamma \in R^+. \tag{2}$$

Proof of theorem 2, continued

Claim: The set of indecomposable elements is a base.

Proof.

Call this set Π .

- (1) Each $\alpha \in R^+$ is an \mathbb{N} -linear combination of elements in Π .
- (2) $\alpha, \beta \in \Pi$ distinct, then $\alpha \beta$ is not a root and $(\alpha, \beta) \leq 0$. Otherwise $\beta = \alpha + \gamma$ or $\alpha = \beta + \gamma$ with $\gamma \in R^+$.
- (3) Π forms a linear independent set. Suppose $\sum_{\alpha \in \Pi} n_{\alpha} \alpha = 0$.

Then we get a relation $r=\sum n_{\alpha}\alpha=\sum m_{\beta}\beta,\ n_{\alpha},m_{\beta}>0$, and the two sets are disjoint. But then

$$(r,r) = \sum n_{\alpha} m_{\beta}(\alpha,\beta) \le 0$$
. So $r = 0$. But then

$$0 = (r, h_0) = \sum_{\alpha} n_{\alpha} \langle \alpha, h_0 \rangle = \sum_{\alpha} m_{\beta} \langle \beta, h_0 \rangle, \text{ so all }$$

$$n_{\alpha}, m_{\beta} = 0.$$

Proposition 1

Each base is obtained in this fashion.

Proof.

Choose h_0 such that $\langle \alpha, h_0 \rangle > 0$ for all $\alpha \in \Pi$. Let R^{\pm} be the positive and negative systems corresponding to h_0 . Clearly

$$R^{+} = \left\{ \beta \in R \mid \beta = \sum_{\alpha \in \Pi} n_{\alpha} \alpha, \ n_{\alpha} \in \mathbb{N} \right\}. \tag{3}$$

Weyl Chambers

A Weyl chamber is a connected components $\mathcal C$ of $V-\bigcup_{\alpha\in R}H_\alpha$. Recall that a regular element $h_0\subset V$ is an element so that

$$\langle \alpha, h_0 \rangle \neq 0$$
 for any $\alpha \in R$. (4)

Each h_0 regular determines a Weyl chamber $\mathcal{C}(h_0)$

$$\{ \text{Weyl chambers} \} \longleftrightarrow \{ \text{Bases} \}. \tag{5}$$

Lemma 3

The Weyl group W(R) permutes the Weyl chambers.

Proof.

Clear.

Lemma 4

If $\gamma \in R^+$ is not simple, there is $\alpha \in \Pi$ such that $\gamma - \alpha \in R^+$.

Proof.

There is $\alpha \in R^+$ such that $(\gamma, \alpha) > 0$. This implies the claim of the lemma. If $(\gamma, \alpha) \leq 0$ for all $\alpha \in \Pi$, then since

$$\gamma = \sum_{\beta \in \Pi} n_{\beta} \beta, \ n_{\beta} \ge 0, \tag{6}$$

we get

$$(\gamma, \gamma) = \sum n_{\beta}(\gamma, \beta) \le 0 \text{ so } \gamma = 0.$$
 (7)

Corollary 5

Every root $\gamma \in R^+$ can be written as

$$\gamma = \alpha_1 + \dots + \alpha_k \qquad \alpha_j \in \Pi \tag{8}$$

such that $\alpha_1 + \cdots + \alpha_i$ is a root for each $i \leq k$.

Proof.

Exercise.

Lemma 6

Let $\alpha \in \Pi$. Then

$$s_{\alpha}(R^{+}) = (R^{+} \setminus \{\alpha\}) \cup \{-\alpha\}. \tag{9}$$

Proof.

Clearly $s_{\alpha}(\alpha) = -\alpha$. Suppose $\gamma \neq \alpha$ is in R^+ . Then

$$\gamma = \sum_{\beta \neq \alpha} n_{\beta} \cdot \beta + n_{\alpha} \cdot \alpha \tag{10}$$

 $s_{\alpha}(\beta) = \beta + m \cdot \alpha$ with $m \ge 0$. There is at least one $n_{\beta} \ne 0$ in the first sum. It follows that the coefficient of β in $s_{\alpha}(\gamma)$ is > 0. So all coefficients are > 0. Thus $s_{\alpha}(\gamma) \in R^+$.

Corollary 7

If
$$\rho:=\frac{1}{2}\sum_{\alpha\in R^+}\alpha$$
, then

$$s_{\beta}(\rho) = \rho - \beta$$
 for any $\beta \in \Pi$. (11)

Proof.

Exercise.

Theorem 8 (Main Theorem)

Let Π be a base of R.

1 If $h_0 \in V$ is regular, there exists $w \in W$ such that

$$\langle w(h_0), \alpha \rangle > 0$$
 for all $\alpha \in \Pi$.

- ② If $\Pi' \subset R$ is another base, there is a $w \in W$ such that $w(\Pi') = \Pi$.
- **3** If $\alpha \in R$ is any root, there is $w \in W$ such that

$$w\alpha \in \Pi.$$
 (12)

- **1** W is generated by s_{α} , $\alpha \in \Pi$.
- If $w(\Pi) = \Pi$, then w = 1.

Proof of Main Theorem

Proof.

Let W' be the subgroup geneated by s_{α} , $\alpha \in \Pi$. We prove (1)-(3) for W' and then (4).

(1) Let $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$ where R^+ is defined by Π . Let $w \in W'$ be such that

$$\langle w(h_0), \rho \rangle$$
 is maximal. (13)

Let $\alpha \in \Pi$. Look at

$$(s_{\alpha}w(h_0),\rho)=(w(h_0),\rho-\alpha)\leq (w(h_0),\rho). \tag{14}$$

Thus $(w(h_0), \alpha) \ge 0$ as claimed; in fact > 0 because $(w(h_0), \alpha) \ne 0$ for any α . (2) Exercise.

Proof of Main Theorem, continued

Proof.

(3) Because of (2), it is enough to see that for any $\alpha \in R$ there is at least one base it belongs to. Look at $V \setminus H_{\alpha}$. Since R is reduced, all other H_{β} , $\beta \neq \pm \alpha$ are distinct from H_{α} . Choose h_0 so that

$$(h_0, \alpha) = \varepsilon > 0 \quad |(h_0, \beta)| > \varepsilon \quad \beta \neq \pm \alpha.$$
 (15)

Then $\alpha \in \Pi(h_0)$.

(4) Let $\alpha \in R$. Then there is $w \in W'$ such that $w(\alpha) = \alpha_1 \in \Pi$. We get

$$s_{\alpha} = s_{w(\alpha_1)} = w \circ s_{\alpha_1} \circ w^{-1} \tag{16}$$

so s_{α} is a product of simple root reflections.

$$(w=s_{\beta_1}\circ s_{\beta_2}\cdots)$$

Proof of Main Theorem, continued

Proof.

(5) Suppose $w(\Pi) = \Pi$. Write a minimal expression

$$w = s_1 \circ \cdots \circ s_k, \qquad s_i = s_{\alpha_i} \qquad \alpha_i \in \Pi$$
 (17)

not necessarily distinct. Then write

$$w_i = s_1 \cdots s_i$$
, (in particular $w_k = w$). (18)

$$w(\alpha_k) = w_{k-1} \cdot s_k(\alpha_k) = w_{k-1}(-\alpha_k) = -w_{k-1}(\alpha_k).$$
 (19)

By the assumption, $w(\Pi) = \Pi$, so $w(\alpha_k) > 0$, and therefore w_{k-1} maps α_k to a negative root. In such a case we can show that there is t < i such that

$$w_{k-1} = s_1 \cdots s_{t-1} \ s_{t+1} \cdots s_{k-1} \tag{20}$$

Proof of Main Theorem, continued

continued.

Let t be the smallest so that

$$\gamma = s_{t+1} \cdots s_{k-1}(\alpha_k) > 0. \tag{17}$$

Then since $s_t(\gamma)$ is negative, $\gamma = \alpha_t$. So

$$s_t = (s_{t+1} \cdots s_{k-1}) s_k (s_{k-1} \cdots s_{t+1}).$$
 (18)

Plug this into the reduced expression for w to find a strictly shorter expression of w in terms of simple reflections.

Irreducible systems

We assume that the root system R is irreducible. This means that we cannot decompose $R = R_1 \cup R_2$ disjoint union so that each R_i is a root system.

Recall that $\alpha < \beta$ means that either $\beta = \alpha$ or $\beta - \alpha$ is a sum of positive roots.

This implies that if $\alpha_1 \in R_1$ and $\alpha_2 \in R_2$, then $\alpha_1 \pm \alpha_2$ cannot be a root. Furthermore, $V = V_1 \oplus V_2$ where V_i are the spans of the roots in R_i .

A root is called maximal, if for any other root α , $\beta - \alpha$ is a sum of positive roots (or is not a root).

Lemma 9

If R is irreducible, there is a unique maximal root β . Furthermore, $\beta = \sum_{\gamma \in \Pi} m_{\gamma} \gamma$ with all $m_{\gamma} > 0$.

Proof of Lemma 9

Proof.

Let β be a maximal root. Then $\beta = \sum_{\alpha \in \Pi} m_{\alpha} \alpha, \ m_{\alpha} \geq 0$.

Observe that $(\gamma, \beta) \geq 0$ for all $\gamma \in \Pi$. Otherwise $(\gamma, \beta) < 0$ implies $\gamma + \beta$ is a root, which is strictly bigger. Define $\Pi_1 := \{\alpha \in \Pi \mid m_{\alpha} > 0\}, \ \Pi_2 := \{\alpha \in \Pi \mid m_{\alpha} = 0\}.$

If
$$\gamma \in \Pi_2$$
, then $(\gamma, \beta) = \sum_{\alpha \in \Pi} m_{\alpha}(\gamma, \alpha) \leq 0$. So $(\gamma, \beta) = 0$

and therefore also $(\gamma,\alpha)=0$ for all $\alpha\in\Pi_1$. Then $R^+=R_1^+\cup R_2^+$, a contradiction. Thus all $m_\alpha>0$ and $(\beta,\alpha)\geq 0$ for all $\alpha\in\Pi$, and $(\beta,\alpha)>0$ for at least one simple root.

If β' is another maximal root, $(\beta, \beta') > 0$, so $\beta - \beta'$ is a root. One of β , β' cannot be maximal.

Lemma 10

The W orbit of any root spans V.

Proof.

Follows from previous facts about irreducibility of V. See part 2 in proposition 4 in the lecture from April 2-4.

Lemma 11

R has at most 2 root lengths.

Proof.

Let α_1 , α_2 be two roots. We can conjugate one of the roots by the Weyl group so that they have nonzero inner product. The classification of root systems of rank 2 shows that the ratio of the lengths of such roots is either 2 or 3. If for example $\|\alpha_2\|^2 = 2\|\alpha_1\|^2$ and $\|\alpha_3\|^2 = 3\|\alpha_1\|^2$ then $\|\alpha_3\|^2 = \frac{3}{2}\|\alpha_2\|^2$, a contradiction.

Lemma 12

The maximal root is long.

Proof.

Suppose β is maximal and α is arbitrary. We want to show $||\alpha||^2 \leq ||\beta||^2$. We can conjugate α by W so that it satisfies $(\alpha,\gamma)\geq 0$ for all $\gamma\in\Pi$. At least one $(\alpha,\gamma)>0$. Then $(\beta,\alpha)>0$, and $\beta-\alpha$ must be a root in R^+ , so a sum of simple roots with nonnegative coefficients. Therefore $(\alpha,\beta-\alpha)\geq 0$, and

$$(\beta,\beta) = (\beta - \alpha, \beta - \alpha) + 2(\alpha,\beta - \alpha) + (\alpha,\alpha) \ge (\alpha,\alpha).$$
 (19)

Classification of irreducible root systems

The irreducible (or simple) root systems are characterized by their corresponding Cartan matrices.

Definition 13 (Cartan Matrix)

An $n \times n$ matrix with integer entries $A = [a_{ij}]$ is called a generalized Cartan matrix if

- **1** $a_{ii} = 2$,
- $a_{ij} \leq 0 \text{ for } i \neq j,$
- \bullet $a_{ij} = 0$ if and only if $a_{ji} = 0$.

It is called a Cartan matrix if in addition $det A \neq 0$.

If R is an irreducible root system, then the matrix $A = [\langle \check{\alpha}_i, \alpha_j \rangle]$ is a Cartan matrix.

Proposition 2

Two root systems with the same Cartan matrix are isomorphic.

A Cartan matrix gives rise to a **Coxeter-Dynkin Graph**. This has one vertex for each simple root $\alpha_1 \cdots \alpha_\ell$. Two of them are joined if $\langle \alpha_i, \alpha_j \rangle < 0$ as many times as the ratio of lengths.

The arrow points to shorter root.

The classification of the Dynkin diagrams is described in Humphreys chapter III.