
MAT344 Week 1

2019/Sep/9

1 Announcements

1. Make sure you have access to quercus and piazza.

2. Enroll in a tutorial.

3. Read the Syllabus and Study tips (also uploaded to https://www.math.toronto.edu/balazse/2019_Fall_

MAT344/).

4. Read Chapter 1 of the textbook [KT17]. It is an easy and fun read, and explores many of the questions that
we will study later in the class.

5. Note: for some reason the textbook .pdf and print versions numbers differ slightly from the (more interactive)
html version. When using references, we will refer to the .pdf version.

6. Problem set 1 will be sent out on Thursday.

2 This week

This week, we are talking about

1. Basic counting techniques,

2. Permutations,

3. Combinations

3 Strings (Chapter 2.1 in [KT17])

Exercise 3.1 ([Bog04], Chapter 1.2 Problem 6). An ice cream parlor offers 12 different flavors of ice cream, and
triple decker cones are made in homemade waffle cones. Having chocolate ice cream as the bottom scoop is different
from having chocolate ice cream as the top scoop. How many different triple decker cones of ice cream are available?

Solution: We have 12 choices for all of the bottom, middle, and top scoops, and if two sequence of choices differ
at any point, they result in different triple decker ice cream cones. So we have 12 · 12 · 12 = 1728 different kinds of
triple decker cones.

The above problem is a typical one that we will encounter in this class. We are asked “How many...”, and with
some logic we come up with a number. After solving a problem, a mathematician will ask themselves: what other
problems will we be able to solve with this method? To help with this, we use abstraction: we strip away irrelevant
parts of the problem and introduce terminology for the parts that matter.

For instance, rather than thinking about flavors in ice cream, we number the flavors:

Definition 3.2. Combinatorialists like to count things, so the set {1, 2, . . . , n} appears a lot. So we use the
shorthand [n] for it.
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Then instead of thinking of the bottom, middle and top scoops, we number the positions as well:

Definition 3.3. Let X be a set. An X-string of length n is a function s : [n] → X. Alternatively, we will say
that a string is a sequence of elements of X, and we’ll often write s = x1x2 . . . xn. We also refer to strings as
words in an alphabet X.

We will use strings as a tool for modeling counting problems. Many times, we can translate a counting question
to a question that is about counting strings. Why is this a good idea? Strings are really easy to count:

Theorem 3.4. The number of X-strings of length n is |X|n.

Before proceeding to the proof of our first Theorem (or any Theorem, for that matter), it is good practice to
perform a sanity check. The ice cream problem in the beginning asked us how many triple-decker cones of ice cream
are there if there are 12 flavors. Translating this into the language of strings, this is asking us about [12]-strings of
length 3. The formula in Theorem 3.4 predicts the number to be |[12]|3 = 123 = 1728, which agrees with what we
found directly.

Proof of Theorem 3.4. Am X-string of length 1 is just an element of X, and X has |X| many elements. Now
assume that the number of X-strings of length k is |X|k. An X-string of length k + 1 is an X-string of length k
followed by an X-string of length 1. Therefore there are |X|k+1 many |X|-strings of length k + 1, and we are done
by induction.

Q.E.D.

During the course of the proof, we implicitly used two basic counting principles. Let A and B be disjoint sets
(recall this means that A and B have no elements in common). Recall that the union of two sets A∪B consists of
elements that are either in A or B, while the product A×B consists of ordered pairs (a, b) such that a ∈ A, b ∈ B.

1. The addition principle says that |A ∪B| = |A|+ |B|.

2. The multiplication principle or product principle says that |A×B| = |A| · |B|.

Example 3.5. Let A = {x, y}, B = [3]. Then |A| = 2, |B| = 3. We have A ∪ B = {x, y, 1, 2, 3} and |A ∪ B| = 5.
We have A×B = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)}, and |A×B| = 6.

Remark 3.6. The set of functions from a set X to another set Y is often denoted Y X . Why is this a good notation?

Example 3.7 ([KT17], Example 2.2). A machine instruction in a 32-bit operating system is a bit string of length
32, or, in our language, a [2]-string of length 32. There are 232 many of these.

The next problem illustrates that Theorem 3.4 is not flexible enough to handle all string-counting problems on the
nose:

Exercise 3.8. Standard passenger vehicle licence plates in Ontario are four letters in the English alphabet, followed
by three digits. How many possible licence plates are there?

But if we first break the problem down to simpler parts, where Theorem 3.4 is applicable, and use it together
with the addition and multiplication principles, we can solve many problems.

Solution: Consider the four letters first. By Theorem 3.4, there are 264 = 456976 different sequences of four
letters. Similarly, there are 103 = 1000 possibilities for the three digits. By the product principle, there are
456976 · 1000 = 456976000 possible licence plates.

At this point, you might wonder what good it is to be able to count things, what will we do with these numbers?
The next problem illustrates a potentially important application:

Exercise 3.9 ([KT17], Exercise 2.9.3). Matt is designing a website authentication system. He knows passwords are
most secure if they contain letters, numbers, and symbols. However, he doesn’t quite understand that this additional
security is defeated if he specifies in which positions each character type appears. He decides that valid passwords
for his system will begin with three letters (uppercase and lowercase both allowed), followed by two digits, followed
by one of 10 symbols, followed by two uppercase letters, followed by a digit, followed by one of 10 symbols. How
many different passwords are there for his website system? How does this compare to the total number of strings of
length 10 made from the alphabet of all uppercase and lowercase English letters, decimal digits, and 10 symbols?
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Solution: Following the logic of the previous problem, there are (2 · 26)3 · 102 · 10 · 262 · 10 · 10 = 9505100800000 ≈
9 · 1013 with Matt’s conventions, whereas if we allow letters, digits and symbols at all of the 10 places, we get
(2 · 26 + 10 + 10)10 = 3743906242624487424 ≈ 4 · 1019 passwords, roughly 400000 times more than with Matt’s
convention!

4 Permutations (Chapter 2.2 in [KT17])

We have already seen some limitations of using strings to model counting problems in the previous section. Imagine
a situation where four people stand in a line. Representing the four people by numbers, this corresponds to counting
certain [4]-strings of length 4. There are 44 = 256 of these in total, but most of them are not useful for us, since
we want each number to appear exactly once. Let’s think of it in a different way. Any of the 4 people can stand in
the first position, then any of the remaining 3 people can be second, then either of the remaining 2 people can fill
the third spot, and we have no choice about the last position. Altogether this says that we have 4 · 3 · 2 · 1 = 24
choices (notice how different this number is from 256).

Definition 4.1. An X-string s = x1x2 . . . xn is called a permutation if all n characters used in s are distinct.

Definition 4.2. When n is a positive integer, we define n! (n factorial) by

n! = n · (n− 1) · (n− 2) · . . . · 3 · 2 · 1.

and we set 0! = 1.

The discussion above is easily generalized to the following result:

Proposition 4.3. Let X be a set with |X| = n. There are n! many ways of ordering the elements of X.

With a little modification, this can be used to answer more general questions:

Definition 4.4. Let n ≥ k ≥ 0. We define

P (n, k) =
n!

(n− k)!
= n · (n− 1) · (n− 2) · . . . · (n− k + 2) · (n− k + 1).

Theorem 4.5. [[KT17], Proposition 2.5] If X is an n-element set and k is a positive integer with n ≥ k then the
number of X-strings of length k that are permutations is P (n, k).

As before, in some cases we have to be clever about using Theorem 4.5:

Exercise 4.6. We want to sit 5 out of 10 people at a round table, where it does not matter where you sit, only
who your left-hand and right-hand neighbors are (in other words, rotating around the table results in the same
configuration, but this is not true for reflections). In how many ways can they sit down?

Solution: Consider the situation where 5 out of 10 people are forming a line. Theorem 4.5 implies immediately
that there are P (10, 5) = 10!

5! = 30240 ways of doing this. Now imagine that we arbitrarily pick a chair, and declare
it the first chair. Then effectively we are making people form a line, so there are 30240 many ways. But since the
first choice of the chair does not matter, we counted each case 5 times. So there are 6048 many ways of sitting the
people around the table.

The preceding problem illustrates an important technique. Often it is easier to overcount something, and then
figure out how much we overcounted by.

Exercise 4.7 (Fermat’s little theorem). If you have seen some number theory or abstract algebra, you may know
that if p is a prime and k is a positive integer, then kp − k is divisible by p. We will give a proof of this theorem
using combinatorial reasoning.

1. Suppose we have beads of k different colors. We are putting p many of them on a string. In how many ways
can we do this?

2. How about if we want to use at least 2 different colors? (Hint: It is a lot easier to count those strings of
beads where we have only used 1 color)
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3. Now we tie the two ends of the string together, forming a necklace. Cyclic rotations of sequences may result
in the same necklace. How much did we overcount by? Make sure to use the fact that p is a prime.

4. How does this show that kp − k is divisible by p?

Exercise 4.8 ([Gui18], Exercise 1.2.5). In chess, a rook attacks any piece in the same row or column as the rook,
provided no other piece is between them. In how many ways can eight indistinguishable rooks be placed on an 8× 8
chessboard so that no two attack each other? What about eight indistinguishable rooks on a 10× 10 board?

Exercise 4.9 ([Bog04], Chapter 1.2 Problem 7). The idea of a function is ubiquitous in mathematics. A function
f from a set S to a set T is a relationship between the two sets that associates exactly one member f(x) of T with
each element x in S.

(a) Using f, g, . . . , to stand for the various functions, write down all the different functions you can from the set
[2] to the set {a, b}. For example, you might start with f(1) = a, f(2) = b. How many functions are there from
the set [2] to the set {a, b}?

(b) How many functions are there from the three element set [3] to the two element set {a, b}?

(c) How many functions are there from the two element set {a, b} to the three element set [3]?

(d) How many functions are there from a three element set to a 12 element set?

(e) The function f is called one-to-one or an injection if whenever x is different from y, f(x) is different from
f(y). How many one-to-one functions are there from a three element set to a 12 element set?

5 Combinations (Chapter 2.3 in [KT17])

The next problem illustrates that we can solve many problems with the basic principles, but we may be better off
looking for a more general formula.

Exercise 5.1 ([Bog04], Chapter 1.2 Problem 2). Some n schools are going to send their baseball teams to a
tournament, and each team must play each other team exactly once. Let us think of the teams as numbered 1
through n.

1. How many games does team 1 have to play in?

2. How many games, other than the one with team 1, does team two have to play in?

3. How many games, other than those with the first i− 1 teams does team i have to play in?

4. In terms of your answers to the previous parts of this problem, what is the total number of games that must
be played?

The natural form of the answer to part 4. above is
∑n

k=1(n − k). This raises the question: What should
be considered an answer to a counting problem? The answers we gave last time (e.g. m!

(m−n)! for the number of

permutations of length n from a set with m elements) were what we call “closed formulas”, i.e. formulas that do
not involve iterating over a set1, in particular, they do not involve summation signs. On the other extreme there is
always the completely useless formula |X| =

∑
x∈X 1 that requires listing all the elements of X.

The formula
∑n

k=1(n− k) is between the two extremes. It is certainly better than
∑

x∈ games 1, but maybe we can
improve on it to not include a summation sign. Let’s interpret the question in terms of strings. We are looking for
[n]-strings of length 2 with no repeats, so there should be P (n, 2) many of them. However, for any 1 ≤ i < j ≤ n,
we counted both (i, j) and (j, i) and we want each team to play every other team exactly once (there is no “home

team”), so we overcounted by a factor of 2, so altogether there are P (n,2)
2 = n!

2(n−2)! many matches. This is a better

answer than the one we gave before.

1The way we defined factorials, this actually involves iterating over a set and taking product, but we consider factorials to be a very
basic object in combinatorics and we are happy with answers that are given in terms of factorials
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Exercise 5.2 ([Bog04], Chapter 1.2.6 Problem 34). Consider the ice cream parlor with 12 different flavors and
triple-decker cones (recall that having chocolate as the bottom scoop is different from having it on top). A person
claims that to order 3 different flavors here is the same as choosing 3 different flavors.

1. What is the difference between the number of ways to stack ice cream in a triple decker cone with three different
flavors and the number of ways to simply choose three different flavors? What aspect of the triple decker cone
is this person neglecting?

2. In particular, how many different triple decker cones use chocolate, strawberry and vanilla?

3. Using your answer from the previous part, compute the number of ways to choose three different flavors of ice
cream from the number of ways to choose a triple-decker cone with three different flavors.

More abstractly, in problem 5.1 and problem 5.2, we wanted to enumerate subsets of a certain size of a given
set.

Definition 5.3. If X is a set with |X| = n and 0 ≤ k ≤ n, then the number of k-element subsets of X is the
binomial coefficient

(
n
k

)
or alternatively C(n, k) (read: “n choose k”). We also call a k-element subset of X a

k-combination of X.

We can express binomial coefficients in terms of factorials.

Proposition 5.4 ([KT17], Proposition 2.8). If 0 ≤ k ≤ n are integers, then the number of k-combinations of a set
with n elements is (

n

k

)
= C(n, k) =

P (n, k)

k!
=

n!

k!(n− k)!

Proof. Let X be an n-element set. The number of k-permutations of X is P (n, k). We have overcounted each
combination by a factor of k!, since the order in which we pick them does not matter.

Q.E.D.

6 Combinatorial Proofs (Chapter 2.4 in [KT17])

Like many concepts, combinatorial proofs are best explained by an example. Consider the following identity, for
0 ≤ k ≤ n: (

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
. (1)

To prove this identity, your first instinct may be to expand everything to factorials and manipulate the algebra.

Proof. The right hand side can be expressed as(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!

=
k(n− 1)!

k(k − 1)!(n− k)!
+

(n− k)(n− 1)!

k!(n− k)(n− k − 1)!

=
k(n− 1)!

k!(n− k)!
+

(n− k)(n− 1)!

k!(n− k)!

=
(n− k + k)(n− 1)!

k!(n− k)!

=
n!

k!(n− k)!

=

(
n

k

)
,

which is the left hand side, so the two sides are equal.
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Q.E.D.

This is certainly a proof, but it does not seem like it offers much in terms of an explanation. We have gotten
from one side to the other by essentially moving symbols around.

Now compare this above proof to the following argument, which we’ll call a combinatorial proof.

Proof. The LHS is counting k-element subsets of [n]. For any subset S of size k, either n ∈ S or n 6∈ S. In the
first case, the remaining elements of S form a subset of [n− 1] of size k − 1, and in the second case, the remaining
elements of S form a subset of [n− 1] of size k. There are

(
n−1
k−1
)

and
(
n−1
k

)
of these, respectively.

Q.E.D.

How is this proof different from the algebraic one? We interpreted the numbers of the LHS and RHS as sizes of
two sets, namely, subsets of [n] of size k on the LHS and subsets of [n− 1] of size k− 1 and subsets of [n− 1] of size
k on the RHS, and we showed that there is a bijection between these two sets. Proving something by constructing
an explicit bijection between two sets that have the same size is what we will refer to as a combinatorial, or
bijective proof.

Richard Stanley, possibly the most famous combinatorialist alive, after introducing a non-combinatorial and a
combinatorial proof of a result, says the following ([Sta97], p22):

“Not only is the above combinatorial proof much shorter than our previous proof, but it also makes the reason
for the simple answer completely transparent. It is often the case, as occurred here, that the first proof to come to
mind turns out to be laborious and inelegant, but that the final answer suggests a simpler combinatorial proof.”

Now we’ll look at a few combinatorial proofs:

1. Let n be a positive integer and 0 ≤ k ≤ n. Explain why(
n

n− k

)
=

(
n

k

)
.

2. ([KT17], Example 2.12) Let n be a positive integer. Using Figure 1, explain why

n∑
i=1

i =

(
n + 1

2

)
.

Figure 1: The sum of the first n integers
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3. ([KT17], Example 2.13) Let n be a positive integer. Using Figure 2, explain why

n∑
i=1

(2i− 1) = n2.

Figure 2: The sum of the first n odd integers

4. ([KT17], Example 2.14) Let n be a positive integer. Explain why

n∑
k=0

(
n

k

)
= 2n.

Hint: Think of subsets of [n].

5. ([KT17], Example 2.16) Explain the identity

3n =
n∑

i=0

(
n

i

)
2i

Hint: Think of both sides as counting ternary strings (that is, [3]-strings) of length n.

6. ([KT17], Example 2.17) For each non-negative integer n,(
2n

n

)
=

n∑
i=0

(
n

i

)2

Hint: Think of both sides counting bit strings of length 2n with half the bits being 0’s.

7. ([Sta97], 1.1.17 Example) Let a, b, n be nonnegative integers. Verify the identity

n∑
i=0

(
a

i

)(
b

n− i

)
=

(
a + b

n

)
.

Hint: Think of both sides counting n-element subsets of [a + b].

For some excellent problems on finding combinatorial proofs for identities, see Exercise 3 after Chapter 1 of [Sta97],
or http://www-math.mit.edu/~rstan/bij.pdf.
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7 Binomial coefficients (Chapter 2.5 in [KT17])

Recall the result about binomial coefficients that we just proved (1):(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Notice that this equation expresses one binomial coefficient as the sum of two other binomial coefficients, with n−1
instead of n in the “top spot”. This relation is the basis for Pascal’s triangle (Figure 3).

Figure 3: Pascal’s triangle

For some fun problems on Pascal’s triangle, see Chapter 1.2.5 of [Bog04], we only mention one of them here:
can you find a way of interpreting the equation

n∑
k=0

(
n

k

)
= 2n?

Exercise 7.1 ([Lev18], Chapter 1.4). The Stanley Cup is decided in a best of seven tournament between two teams.
In how many ways can your team win? Let’s answer this question two ways:

1. How many of the 7 games does your team need to win? How many ways can this happen?

2. What if the tournament goes all 7 games? So you win the last game. How many ways can the first 6 games
go down?

3. What if the tournament goes just 6 games? How many ways can this happen? What about 5 games? 4 games?

4. What are the two different ways to compute the number of ways your team can win? Write down an equation
involving binomial coefficients. What pattern in Pascal’s triangle is this an example of?

5. Generalize. What if the rules changed and you played a best of 9 tournament (5 wins required)? What if you
played an n game tournament?

Solution:

1. We need to win 4 games out of 7, and this can happen in
(
7
4

)
many ways.

2. If it comes to a game 7, then our team has won 3 our of the first 6 games. There are
(
6
3

)
many ways for this.

3. Similarly to the previous part if the tournament goes to 6, 5, or 4 games, there are
(
5
3

)
,
(
4
3

)
,
(
3
3

)
many ways,

respectively.
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4. Comparing the two ways of counting, we find that(
7

4

)
=

(
6

3

)
+

(
5

3

)
+

(
4

3

)
+

(
3

3

)
.

Exercise 7.2 ([Lev18], Chapter 1.4, Exercise 4.). A woman is getting married. She has 15 best friends but can
only select 6 of them to be her bridesmaids, one of which needs to be her maid of honor. How many ways can she
do this?

1. What if she first selects the 6 bridesmaids, and then selects one of them to be the maid of honor?

2. What if she first selects her maid of honor, and then 5 other bridemaids?

3. Explain why 6
(
15
6

)
= 15

(
14
5

)
.

4. Generalize. What if she has n best friends, only k of whom can be bridesmaids, and only j of them can be
maids of honor? What is the resulting binomial identity?

5. Generalize further. What if we have an n-element set, and we have to choose a k1-element subset of it, and a
k2-element subset of that subset, and so on until a final j-th subset of size kj (of course n ≥ k1 ≥ k2 . . . ≥ kj).
What is the resulting binomial identity?
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