MAT344 Problem Set 7 (due Thursday, November 14, noon)

Notes:

- For all the questions, always explain your reasoning and refer to the results you are using. Just a number (even if it is the correct final answer) will not get you full credit.
- When submitting to Crowdmark, please ensure that your uploads are legible, correctly rotated, and properly matched with the correct problems. Any improperly uploaded problem scans will not be graded.
- Any assignments submitted after the deadline will not be accepted.

Part A

Three randomly chosen questions from this part will be marked.
Problem 1. How many surjections are there from [7] to [4]? (for this question, give the answer as a number, not a formula)

Problem 2. How many derangements are there of the set [6]? (for this question, give the answer as a number, not a formula)

Problem 3. How many integer solutions are there to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=32
$$

with $0 \leq x_{i} \leq 10$ for $i=1,2,3,4$?
Problem 4. How many numbers from 1 to 5000 are divisible by either 3 or 17 ?

Part B

Two randomly chosen questions from this part will be marked.
Problem 5. The Euler totient function is a function $\phi(n)$ that is defined as follows: for a positive integer $n \geq 2$, let

$$
\phi(n)=|\{m \in \mathbb{Z} \mid 1 \leq m \leq n, \operatorname{gcd}(m, n)=1\}|
$$

(that is, $\phi(n)$ is the number of positive integers less than or equal to n relatively prime to n).
(a) Find $\phi(p)$ for p a prime number.
(b) Find $\phi\left(p^{k} q^{l}\right)$ for p and q distinct primes and k, l positive integers.
(c) Use inclusion-exclusion to find $\phi(n)$ for $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}$ with the p_{i} distinct primes and k_{i} positive integers.

Problem 6. The principle of inclusion-exclusion is not the only approach available for counting derangements. We know that $d_{1}=0$ and $d_{2}=1$. Using this initial information, it is possible to give a recursive form for d_{n}. Give a combinatorial argument to prove that the number of derangements satisfies the recursive formula

$$
d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right)
$$

for $n \geq 2$.
Problem 7. A small merry-go-round has 8 seats occupied by 8 children. In how many ways can the children change places in a way that no child sits behind the same child as on the first ride? The seats do not matter, only the relative positions of the children.

Part C

This question will be marked for completion only.
Problem 8. Give an example of a problem that is difficult to enumerate directly but can be counted using inclusion-exclusion.

