Learning Objectives

In this tutorial you will practise manipulating generating functions - moving between sequences, closed forms of generating functions, and formulas for coefficients.
These problems relate to the following course learning objectives: describe solutions to iterated processes by relating recurrences to induction, generating functions, or combinatorial identities.

Identifying Functions

1. Match the descriptions of sequences to the initial terms in the sequence and the closed form of the generating function.
(a) The alternating sign sequence, $\left[(-1)^{n}\right]$.
(b) The sequence of squares, $\left[n^{2}\right]$.
(c) The sequence $a_{n}=\left\{\begin{array}{l}3 \text { if } n \text { is a multiple of } 3 \\ 1 \text { otherwise. }\end{array}\right.$
(d) The powers of $3,\left[3^{n}\right]$.
(e) The natural numbers, $[n]$.

$[3,1,1,3,1,1,3,1, \ldots]$	$\frac{1}{(1-3 x)}$
$[1,3,9,27,81, \ldots]$	$\frac{1}{1-x}+\frac{2}{1-x^{3}}$
$[0,1,4,9,16,25,36, \ldots]$	$\frac{1}{(1-x)}-\frac{2 x}{\left(1-x^{2}\right)}$
$[0,1,2,3,4,5,6, \ldots]$	$\frac{x}{(1-x)^{2}}$
$[1,-1,1,-1,1,-1,1,-1, \ldots]$	$\frac{2 x}{(1-x)^{3}}-\frac{x}{(1-x)^{2}}$

2. Suppose $a_{n}=B n+C$ is a linear sequence. Show that it has generating function $\frac{r}{(1-x)}+\frac{t}{(1-x)^{2}}$ for some r, t depending on B and C.
3. Show that any polynomial sequence $p(n)$ has a generating function

$$
\sum_{i=1}^{d+1} \frac{c_{i}}{(1-x)^{i}}
$$

for some constants c_{i}, where d is the degree of p.

1. The sequences are: (c), (d), (b), (e), (a). The generating functions are: (d), (c), (a), (e), (b). These can be built from the geometric series

$$
1+a x+a^{2} x^{2}+a^{3} x^{3}+\cdots=\frac{1}{1-a x}
$$

and the formal derivatives when $a=1$,
$1+2 x+3 x^{2}+4 x^{3}+5 x^{4} \cdots=\frac{1}{(1-x)^{2}} \quad, \quad 2+6 x+12 x^{2}+20 x^{3}+\cdots=\frac{2}{(1-x)^{3}}$.
The coefficients of x^{n} in the first series are $(n+1)$, and in the second series are $(n+1)(n+2)$.
2. Taking $t=B$ and $r=C-B$, we can sum the two series $\frac{r}{(1-x)}+\frac{t}{(1-x)^{2}}$ to give the coefficients $B n+C$.
3. The coefficients of x^{n} in $\frac{(k-1) \text { ! }}{(1-x)^{k}}$ are $P(n+k-1, k-1)$, either by taking derivatives k times, or by comparing to a stars and bars distribution. Hence, they are all polynomials of degree $k-1$ in the variable n, so taking the set of all of them of degree 0 to d gives a spanning set of the vector space of polynomials of degree up to d.

