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We introduce two new types of diagrams that aid in understanding elements of

Thompson’s group F .

The first is the two-way forest diagram, which represents an element of F as a

pair of infinite, bounded binary forests together with an order-preserving bijection

of the leaves. These diagrams have the same relationship to a certain action of F

on the real line that the standard tree diagrams have to the action of F on the

unit interval. Using two-way forest diagrams, we derive a simple length formula

for elements of F with respect to the finite generating set {x0, x1}.

We then discuss several applications of two-way forest diagrams and the length

formula to the geometry of F . These include a simplification of a result by S. Cleary

and J. Taback that F has dead ends but no deep pockets; a precise calculation

of the growth function of the positive submonoid with respect to the {x0, x1}

generating set; a new upper bound on the isoperimetric constant (a.k.a. Cheeger

constant) of F ; and a proof that F is not minimally almost convex.

Next, we introduce strand diagrams for elements of F . These are similar to tree

diagrams, but they can be concatenated like braids. Motivated by the fact that

configuration spaces are classifying spaces for braid groups, we present a classifying

space for F that is the “configuration space” of finitely many points on a line, with

the points allowed to split and merge in pairs.



In addition to the new results, we present a thorough exposition of the basic

theory of the group F . Highlights include a simplified proof that the commutator

subgroup of F is simple, a discussion of open problems (with a focus on amenabil-

ity), and a simplified derivation of the standard presentation for F and the normal

form for elements using one-way forest diagrams.
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Chapter 1

The Group F
Thompson’s group F is a certain group of piecewise-linear homeomorphisms of

[0, 1]. We define F in section 1, and prove an important characterization of its

elements. In section 2 we introduce tree diagrams, an important tool for under-

standing elements of F . We go on to prove some of the basic properties of F in

sections 3 and 4, and in section 5 we discuss various open problems, with a focus

on amenability. Finally, we discuss several other approaches toward F in section

6, and show how they relate to our homeomorphism approach.

None of the results in this chapter are new. However, we have endeavored to

make many of the proofs simpler and clearer than in previously published versions.

Furthermore, this chapter does not contain proofs for two primary results: the

standard presentation for F and the existence of normal forms. Interested readers

should look ahead to section 2.4 for a treatment using forest diagrams, or consult

[CFP] for the traditional tree-diagrams approach.

1.1 Dyadic Rearrangements

Suppose we take the interval [0, 1], and cut it in half, like this:

 �
 �  �

 

�
 

We then cut each of the resulting intervals in half:

 �
 �  �

 �  �
 

�
 �
 

�
 

and then cut some of the new intervals in half:

1



2

 �
 �  �

 �  �
 

�
 �
 

�
 �  �

 

�
 �
 

to get a certain subdivision of [0, 1]. Any subdivision of [0, 1] obtained in this

manner (i.e. by repeatedly cutting intervals in half) is called a dyadic subdivision.

The intervals of a dyadic subdivision are all of the form:[
k

2n
,
k + 1

2n

]
k, n ∈ N

These are the standard dyadic intervals. We could alternatively define a dyadic

subdivision as any partition of [0, 1] into standard dyadic intervals.

Given a pair D,R of dyadic subdivisions with the same number of cuts, we

can define a piecewise-linear homeomorphism f : [0, 1] → [0, 1] by sending each

interval of D linearly onto the corresponding interval of R. This is called a dyadic

rearrangement of [0, 1]

Example 1.1.1. Here are two dyadic rearrangements:

 

1/2 1/4 1 0 

1/2 

3/4 

1 

0 
1 0 

1 

0 

B
�  B �  

Theorem 1.1.2. Let f : [0, 1] → [0, 1] be a piecewise-linear homeomorphism.

Then f is a dyadic rearrangement if and only if

1. All the slopes of f are powers of 2, and

2. All the breakpoints of f have dyadic rational coordinates.
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Proof. Clearly every dyadic rearrangement satisfies conditions (1) and (2). Sup-

pose now that f is a piecewise-linear homeomorphism satisfying these two condi-

tions. Choose N sufficiently large so that:

1. f is linear on each standard dyadic interval of width
1

2N
, and

2. The formula for each linear segment of f can be written as:

f(t) = 2m
(
t+

k

2N

)
m, k ∈ Z

Let D be the subdivision of [0, 1] into standard dyadic intervals of width 1/2N .

Then f maps each interval of D linearly to a standard dyadic interval, and therefore

maps D to some dyadic subdivision of [0, 1].

Corollary 1.1.3. The set F of all dyadic rearrangements forms a group under

composition.

This group is called Thompson’s Group F .

Theorem 1.1.4. F is infinite and torsion-free.

Proof. Let f be any element of F that is not the identity, and let:

t0 = inf {t ∈ [0, 1] : f(t) 6= t}

Then f(t0) = t0, and f has right-hand derivative 2m at t0 for some m 6= 0. By the

chain rule, the right-hand derivative of fn at t0 is 2mn for all n ∈ N, hence all the

positive powers of f are distinct.

The group F was first defined by Richard J. Thompson in the 1960’s, in con-

nection with his work on associativity. It was later rediscovered by topologists

(Freyd and Heller, and independently Dydak) who were researching the structure
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of topological spaces with homotopy idempotents. (See section 1.6 for a discussion

of these connections.) Since then F has become an important object of study in ge-

ometric group theory, primarily because of some long-standing problems regarding

the geometric structure of its Cayley graph (see section 1.5).

When Thompson originally defined F , he used “backwards” notation for com-

position of functions. We will adopt this convention throughout:

Convention 1.1.5. If f and g are functions, the expression fg will denote “f

followed by g”. In particular:

(fg)(t) = g(f(t))

1.2 Tree Diagrams

The standard dyadic intervals form a binary tree under inclusion:

ã

Ò ! ß  
�
Ó�

ã ã ã

Ò ! ß " Ó

Ò ! ß  
�
Ó� Ò

�
ß  

�
Ó�� Ò

�
ß  � Ó�� Ò � ß  " Ó�

Ò
�
ß  " Ó�

Dyadic subdivisions of [0, 1] correspond to finite subtrees of this infinite binary

tree. For example, the subdivision:

 �
 �  �

 �  �
 

�
 �
 

�
 �  �

 

�
 �
 

corresponds to the subtree:
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Each leaf of this tree represents an interval of the subdivision, and the root rep-

resents the interval [0, 1]. The other nodes represent intervals from intermediate

stages of the dyadic subdivision.

Using this scheme, we can describe any element of F by a pair of finite binary

trees. This is called a tree diagram.

Example 1.2.1. Recall that the element x0 sends intervals of the subdivision:

 �
 �  �

 �  �
 

�
 

linearly onto intervals of the subdivision:

 �
 �  �

 

�
 �
 

�
 

Therefore, x0 has tree diagram:

 

We have aligned the two trees vertically so that corresponding leaves match up.

By convention, the domain tree appears on the top, and the range tree appears on

the bottom.

Example 1.2.2. The tree diagram for x1 is:

 

Of course, the tree diagram for an element of F is not unique. For example,

all of the following are tree diagrams for the identity:
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In general, a reduction of a tree diagram consists of removing an opposing pair of

carets, like this:

 

Performing a reduction does not change the element of F described by the tree

diagram — it merely corresponds to removing an unnecessary “cut” from the

subdivisions of the domain and range.

Definition 1.2.3. A tree diagram is reduced if it has no opposing pairs of carets.

Theorem 1.2.4. Every element of F has a unique reduced tree diagram.

Proof. Note first that a tree diagram for a given f ∈ F is determined entirely by

the domain tree. Furthermore, if T ⊂ T ′ are possible domain trees, then the tree

diagram with domain tree T is a reduction of the tree diagram with domain tree

T ′. Therefore, it suffices to show that the set of possible domain trees for f has a

minimum element under inclusion.

Define a standard dyadic interval to be regular if f maps it linearly onto a

standard dyadic interval. Then a tree T is a possible domain tree for f if and only
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if its leaves are all regular. We conclude that the set of possible domain trees is

closed under intersections, and therefore has a minimum element.

We will generally denote tree diagrams by column vectors

[
T
U

]
, where T and

U are the component binary trees.

The following observation makes it possible to multiply two elements of F

directly from the tree diagrams:

Observation 1.2.5. Suppose that f, g ∈ F have tree diagrams

[
T
U

]
and

[
U
V

]
.

Then

[
T
V

]
is a tree diagram for fg.

Therefore, to multiply two elements f and g, we need only find a corresponding

pair of tree diagrams such that the bottom tree of f is congruent to the top tree

of g. Such a pair can always be obtained by expanding the reduced tree diagrams:

Example 1.2.6. Let f and g be the elements:

 

and 

We can expand the tree diagrams for f and g to get:

 

and 
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Note that the bottom tree for f is now the same as the top tree for g. Therefore,

fg has tree diagram:

 

It is also easy to find a tree diagram for the inverse of an element:

Observation 1.2.7. If

[
T
U

]
is a tree diagram for f ∈ F , then

[
U
T

]
is a tree

diagram for f−1.

1.3 Generators

Let x0, x1, x2, . . . be the elements of F with tree diagrams:

 

â 

B
�  

B �  
B �  

In this section, we will show that these elements generate the group F . We will

also state without proof an infinite presentation for F , and a normal form for words

in the generators. Finally, we will show that the elements {x0, x1} alone generate

F , and derive a finite presentation for F using these generators.
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First, observe that the bottom trees of the elements {x0, x1, x2, . . . } all have

the same form: a long edge on the right with left edges emanating from it. Such

a tree is called a right vine:

 
�

 

�  

Definition 1.3.1. An element of F is positive if the bottom tree of its reduced

tree diagram is a right vine.

Since any subtree of a right vine is a right vine, any tree diagram (reduced or

not) whose bottom tree is a right vine represents a positive element.

Given a binary tree T , let [T ] denote the positive element with top tree T .

Proposition 1.3.2. Every element of F can be expressed as pq−1, where p and q

are positive.

Proof. If f has tree diagram

[
T
U

]
, then f = [T ][U ]−1.

Define the width of a binary tree to be the number of leaves minus one. Given

a binary tree of width w, we number its leaves 0, 1, . . . , w from left to right.

Proposition 1.3.3. Let T be a binary tree of width w. If n < w, then:

[T ]xn = [T ∧ n]

where T ∧ n is the binary tree obtained by attaching a caret to the n’th leaf of T .

Proof. Let V be a right vine of width w. Then

[
T ∧ n
V ∧ n

]
is a tree diagram for [T ],

and xn = [V ∧ n] (since n < w), so:

[T ]xn = [T ∧ n]

by observation 1.2.5.
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Define the right stalk of a binary tree T to be the right vine that grows from

the root of T :

 

Clearly any binary tree T can be constructed by starting with its right stalk and

then attaching carets to the leaves one at a time. Therefore:

Corollary 1.3.4. The set of positive elements is precisely the submonoid generated

by {x0, x1, x2, . . . }.

Corollary 1.3.5. The elements {x0, x1, x2, . . . } generate Thompson’s group F .

We will prove the following two theorems in section 2.4 using forest diagrams.

See [CFP] for a tree-diagram approach.

Theorem 1.3.6. F has presentation:

〈x0, x1, x2, . . . | xnxk = xkxn+1 for k < n〉

Theorem 1.3.7 (Normal Form). Every element of F can be expressed uniquely

in the form:

xa0
0 · · ·xan

n x
−bn
n · · ·x−b00

where a0, . . . , an, b0, . . . , bn ∈ N, exactly one of an, bn is nonzero, and:

ai 6= 0 and bi 6= 0 ⇒ ai+1 6= 0 or bi+1 6= 0

for all i.
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It is possible to put any element of F into normal form using the following four

types of moves, each of which follows from the relations given in theorem 1.3.6:

x−1
n xk → xkx

−1
n+1

x−1
k xn → xn+1x

−1
k

xnxk → xkxn+1

x−1
k x−1

n → x−1
n+1x

−1
k

(where k < n)

These operations allow us to interchange any two generators that are in the

“wrong” order, at the expense of incrementing the larger of the two subscripts.

It is also possible to use the inverses of these operations to put two generators in

the “wrong” order, but only if the subscripts differ by more than one. For example,

we can switch each of the following generator pairs:

x3x5 x3x
−1
5 x5x

−1
3 x−1

5 x−1
3

but we cannot apply an inverse operation to any of the following pairs:

x3x4 x3x
−1
4 x4x

−1
3 x−1

4 x−1
3

Example 1.3.8. Suppose we wish to put the word:

x0x3x6x
−1
3 x1x

−1
4 x0x

−1
3 x−1

0

into normal form. We start by applying operations of types (1) and (2). (In each

step, the generators about to be interchanged are indicated.)

x0 x3 x6 (x−1
3 x1)(x

−1
4 x0) x−1

3 x−1
0

= x0 x3 x6 x1 (x−1
4 x0) x−1

5 x−1
3 x−1

0

= x0 x3 x6 x1 x0 x−1
5 x−1

5 x−1
3 x−1

0
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Next we apply operations of type (3) to arrange the left half of the word. (The

right half is already arranged.)

x0 x3 x6 (x1 x0) x
−1
5 x−1

5 x−1
3 x−1

0

= x0 x3 (x6 x0) x2 x−1
5 x−1

5 x−1
3 x−1

0

= x0 (x3 x0)(x7 x2) x
−1
5 x−1

5 x−1
3 x−1

0

= x0 x0 (x4 x2) x8 x−1
5 x−1

5 x−1
3 x−1

0

= x0 x0 x2 x5 x8 x−1
5 x−1

5 x−1
3 x−1

0

At this point, there are instances of x0 and x−1
0 , but no instances of x1 or x−1

1 . We

can therefore cancel an x0, x
−1
0 pair:

x0 (x0 x2) x5 x8 x−1
5 x−1

5 (x−1
3 x−1

0 )

= x0 x1 (x0 x5) x8 x−1
5 (x−1

5 x−1
0 )x−1

2

= x0 x1 x4 (x0 x8)(x
−1
5 x−1

0 )x−1
4 x−1

2

= x0 x1 x4 x7 (x0 x−1
0 )x−1

4 x−1
4 x−1

2

= x0 x1 x4 x7 x−1
4 x−1

4 x−1
2

Finally, we can also cancel one x4, x
−1
4 pair, since there are no instances of x5

or x−1
5 :

x0 x1 (x4 x7) x
−1
4 x−1

4 x−1
2

= x0 x1 x6 (x4 x−1
4 )x−1

4 x−1
2

This gives us the normal form for the element:

x0 x1 x6 x−1
4 x−1

2

Though the presentation for F given in theorem 1.3.6 is infinite, Thompson’s

group F is actually finitely presented:
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Theorem 1.3.9. The elements x0 and x1 generate F , with presentation:

〈x0, x1 | x2x1 = x1x3, x3x1 = x1x4〉

where the symbol xn (n ≥ 2) stands for the word (x1)
xn−1
0 .

Proof. Since xn+1 = (xn)x0 for each n ≥ 1, we have:

xn = (x1)
xn−1
0

for n ≥ 2. This proves that x0 and x1 generate F .

We must now show that the two relations suffice. For n > k ≥ 0, let Rn,k

denote the relation:

xnxk = xkxn+1

where the symbol xn (n ≥ 2) stands for the word (x1)
xn−1
0 . Our task is to show

that the relations R2,1 and R3,1 imply all the others.

First note that all the relations Rn,0 are trivially true by the definition of the

symbol xn. Next, if we know the relation Rn,k for n > k > 0, we can conjugate

repeatedly by x0 to prove all the relations Rn+i,k+i. This puts us in the following

situation:

R4,3

6>vvvvvvvvv

vvvvvvvvv
R5,3

7?wwwwwwww

wwwwwwww
· · ·

R3,2

8@yyyyyyy

yyyyyyy
R4,2

8@yyyyyyy

yyyyyyy
R5,2

9A{{{{{{{{

{{{{{{{{
· · ·

R2,1

8@yyyyyyy

yyyyyyy
R3,1

8@yyyyyyy

yyyyyyy
R4,1

8@yyyyyyy

yyyyyyy
R5,1

9A{{{{{{{{

{{{{{{{{
· · ·

R1,0 R2,0 R3,0 R4,0 R5,0 · · ·



14

Arrows in this diagram indicate implication, and boxes indicate relations we al-

ready know.

Our strategy is to deduce the relations Rn,1 for n > 3 by induction, with base

case n = 3. Note that while proving Rn,1, we may use any relation Rj,i with the

property that j − i < n− 1. Here’s the calculation:

x2 xn x1

= xn−1 x2 x1 (using Rn−1,2)

= xn−1 x1 x3 (using R2,1)

= x1 xn x3 (using Rn−1,1)

= x1 x3 xn+1 (using Rn,3)

= x2 x1 xn+1 (using R2,1)

Cancelling the initial x2’s yields Rn,1.

Brown and Geoghegan [BrGe] have shown that F has an Eilenberg-MacLane

complex with exactly two cells in each dimension. Therefore, the group F is

infinite-dimensional and has type F∞.

By the way, the presentation above is one of two canonical finite presentations

for F . In the presentation above, the relations Rn,0 were true “by definition”, and

the relations R2,1 and R3,1 were used to deduce the rest. It is possible instead to

assume the relations Rn,n−1 “by definition”, and then use the relations R2,0 and

R3,0 to deduce the rest. We state the resulting presentation without proof:

Proposition 1.3.10. F has presentation:

〈x0, x1 | x2x0 = x0x3, x3x0 = x0x4〉

where the word xn for n ≥ 2 is defined inductively by:

xn+1 = x−1
n−1xnxn−1
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1.4 The Commutator Subgroup

In this section, we will prove that the commutator subgroup [F, F ] is simple, and

that every proper quotient of F is abelian.

Proposition 1.4.1. The abelianization of F is Z⊕ Z.

Proof. Abelianizing the standard presentation for F (see theorem 1.3.6) yields:

〈x0, x1, x2, . . . | xn + xk = xk + xn+1 for k < n〉

which is just:

〈x0, x1, x2, . . . | x1 = x2 = x3 = · · · 〉

In fact Hn(F,Z) = Z⊕ Z for all n ≥ 2. See [BrGe].

There is a nice geometric description of the abelianization:

Proposition 1.4.2. Define a function ϕ : F → Z⊕ Z by:

ϕ(f) =
(
log2 f

′(0), log2 f
′(1)
)

Then ϕ is an epimorphism, and ker(ϕ) = [F, F ].

Proof. That ϕ is a homomorphism follows from the chain rule. For the rest, note

that:

ϕ(x0) = (1,−1) and ϕ(x1) = (0,−1)

Since these vectors generate Z ⊕ Z, ϕ is an epimorphism. Since they are linearly

independent, the kernel of ϕ is [F, F ].

Corollary 1.4.3. Let f ∈ F . Then f ∈ [F, F ] if and only if f is trivial in

neighborhoods of 0 and 1.
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Define a dyadic interval to be any closed interval with dyadic rational end-

points.

Proposition 1.4.4. Let I be any dyadic interval, and let PL2(I) be the subgroup

of F consisting of all elements with support in I. Then PL2(I) ∼= F .

In particular, there exists a piecewise-linear homeomorphism γ : [0, 1]→ I such

that:

1. All slopes of γ are powers of 2, and

2. All breakpoints of γ have dyadic rational coordinates.

Any such homeomorphism conjugates F to PL2(I).

Proof. Clearly I is a union of finitely many standard dyadic intervals. By choosing

a dyadic subdivision of [0, 1] with that same number of intervals, we can construct

the desired homeomorphism γ.

Note that PL2(I) ⊂ [F, F ] when I ⊂ (0, 1).

Theorem 1.4.5. Any nontrivial subgroup of F that is normalized by [F, F ] con-

tains [F, F ].

Proof. Our argument is similar to Epstein’s proof [Eps] that various large home-

omorphism groups are simple. In particular, Epstein proves that the group of

all piecewise-linear, orientation-preserving, compactly-supported homeomorphisms

of (0, 1) is simple, and that the group of all orientation-preserving, compactly-

supported diffeomorphisms of (0, 1) has simple commutator subgroup. (It has

since been shown that this diffeomorphism group is perfect, and therefore simple.

See [Mat].)
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Let N be a nontrivial subgroup of F normalized by [F, F ], and let η be a

nontrivial element of N . Since η is not the identity, there exists a sufficiently small

dyadic interval I ⊂ (0, 1) so that η(I) is disjoint from I.

Given any f ∈ PL2(I), the commutator [η, f ] = η−1 (f−1ηf) = (η−1f−1η) f is

in N , has support in I ∪ η(I), and agrees with f on I. Therefore:

[f, g] = [[η, f ] , g] ∈ N

for any f, g ∈ PL2(I), so N contains every commutator with support in the interior

of I.

However, there exist elements γ1, γ2, γ3, . . . of [F, F ] such that:

γ1(I) =

[
1

4
,
3

4

]
, γ2(I) =

[
1

8
,
7

8

]
, γ3(I) =

[
1

16
,
15

16

]
, . . .

Conjugation by these elements shows that N contains every commutator with

support in the interior of any of these intervals, and hence N contains every element

of [F, F ].

Corollary 1.4.6. Every proper quotient of F is abelian.

Corollary 1.4.7. The commutator subgroup of F is simple.

Closely related to Thompson’s group F are Thompson’s groups V and T . (See

section 7.4 for a discussion of these groups.) These groups are themselves simple

(instead of just having a simple commutator subgroup) and were the first known

examples of infinite, finitely-presented simple groups (see [Hig]).
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1.5 Open Problems

Recall the following definition:

Definition 1.5.1. Let G be a group, and let P(G) be the collection of all subsets

of G. We say that G is amenable if there exists a function µ : G→ [0, 1] (called a

measure) with the following properties:

1. µ(G) = 1.

2. If S and T are disjoint subsets of G, then µ(S ∪ T ) = µ(S) + µ(T ).

3. If S ⊂ G and g ∈ G, then µ(gS) = µ(S).

See [Wag] for a lengthy discussion of amenability.

Theorem 1.5.2.

1. All finite groups are amenable.

2. All abelian groups are amenable.

3. Subgroups and quotients of amenable groups are amenable.

4. Any extension of an amenable group by an amenable group is amenable.

5. Any direct union of amenable groups is amenable.

Theorem 1.5.3. Any group that contains a free subgroup of rank two is not

amenable.

The amenability of F has been an open problem for several decades:

Question 1.5.4. Is F amenable?
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This question was originally motivated by the following considerations. Let

AG denote the class of all amenable groups, and let EG denote the smallest class

of groups containing all finite and abelian groups and closed under subgroups,

quotients, extensions, and direct unions (the elementary amenable groups). Let

NF denote the class of all groups that do not contain a free subgroup of rank two.

According to the above theorems:

EG ⊂ AG ⊂ NF

The question then arises as to whether either of these inclusions is proper. At

the time that the amenability of F was first investigated, there were no known

examples of groups in either AG \EG or NF \AG. However, F was known to be

in the class NF \EG:

Theorem 1.5.5. F is not elementary amenable.

Proof. Chou [Chou] has proven the following result concerning the class EG. Let

EG0 be the class of all finite or abelian groups, and for each ordinal α, let EGα be

the class of all groups that can be constructed from elements of
⋃
β<α EGβ using

extensions and direct unions. Then each class EGα is closed under subgroups and

quotients, and hence:

EG =
⋃
α

EGα

Now, F is certainly not in the class EG0. Furthermore, since F is finitely

generated, F cannot be expressed as a nontrivial direct union. Therefore, we need

only show that F cannot arise in some EGα as a nontrivial group extension.

Suppose there were a nontrivial short exact sequence:

N ↪→ F � Q
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where N,Q ∈ EGβ for some β < α. By theorem 1.4.5, N must contain the

commutator subgroup [F, F ] of F , and therefore N contains a copy of F . Since

EGβ is closed under taking subgroups, we conclude that F ∈ EGβ, a contradiction

since β < α.

Theorem 1.5.6. F does not contain the free group of rank two.

Proof. Let f, g ∈ F . We must show that f and g do not generate a free subgroup.

Assume first that f and g have no common fixed points in (0, 1). Observe

then that any t ∈ (0, 1) can be sent arbitrarily close to 0 using elements of 〈f, g〉

(otherwise the infimum of the orbit of t would be a common fixed point of f

and g). In particular, there is an h ∈ 〈f, g〉 such that [f, g]h has support disjoint

from that of [f, g]. Then [f, g]h and [f, g] commute, so f and g do not generate a

free subgroup.

Now suppose that f and g have a common fixed point in (0, 1). Then the

support of 〈f, g〉 is the union of the interiors of finitely many dyadic intervals

I1, . . . , In. This gives us a monomorphism:

〈f, g〉 ↪→ PL2(I1)× · · · × PL2(In)

By the above argument, the image of 〈f, g〉 in each PL2(Ik) is not free, so each of

the compositions:

F2 � 〈f, g〉 → PL2(Ik)

has a nontrivial kernel. Then the kernel of the projection F2 � 〈f, g〉 is the

intersection of finitely many nontrivial normal subgroups of F2, and is therefore

nontrivial.
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In fact, every nonabelian subgroup of F contains a free abelian group of infinite

rank. See [BrSq] for details.

The status of the classes AG \EG and EG \NF was resolved in the 1980’s.

In particular, Ol’shanskii [Ol] constructed a nonamenable torsion group, thereby

supplying an element of NF \AG; and Grigorchuk [Grig] constructed his famous

group G of intermediate growth, thereby supplying an element of AG \EG.

However, the amenability of F remains an interesting question, if only because

of its puzzling difficulty. F is certainly the most well-known group for which

amenability is still an issue. It is hoped that resolving this question will shed new

light on either the structure of F , or on the nature of amenability.

In addition to amenability, there are several other fundamental open questions

concerning the Cayley graph of F .

Definition 1.5.7. Let G be a group with finite generating set Σ. For each n, let

γ(n) be the number of elements of G which are products of at most n elements of

Σ. Then γ(n) is called the growth function of (G,Σ).

It is known that the limit limn→∞
n
√
γ(n) always exists (see [dlH]). We say that

G has exponential growth if this limit is positive, and subexponential growth if this

limit is 0.

It turns out that the classification of G as having exponential or subexponential

growth does not depend on the finite generating set Σ (see [dlH]).

Proposition 1.5.8. Any group with subexponential growth is amenable.

Letting SG denote all groups with subexponential growth, we have:

SG ⊂ AG ⊂ NF
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Proposition 1.5.9. The submonoid of F generated by
{
x−1

0 , x1

}
is free.

Proof. Consider any word in x−1
0 and x1:

xa11 x
−1
0 xa21 x

−1
0 · · ·x−1

0 xan
1

where a0, . . . , an ≥ 0. We can put this element into normal form by moving the

x−1
0 ’s to the right:

xa1
1 x

a2
2 · · ·xan

n x
−(n−1)
0

Since the normal form is different for different values of a1, . . . , an, every word in

x−1
0 and x1 represents a different element of F .

Corollary 1.5.10. The group F has exponential growth.

It would be interesting to determine the exact growth rate of F with respect

to the {x0, x1} generating set. Perhaps more interesting is the following question:

Question 1.5.11. Let γ(n) be the growth rate of F with respect to the {x0, x1}

generating set, and let:

Γ(t) =
∞∑
n=0

γ(n)tn

Is Γ(t) a rational function?

See [dlH] for details about groups with rational growth functions.

Finally, it is not known whether F is automatic. Recall the following definitions:

Definition 1.5.12. Let G be a group with finite generating set Σ, and let Γ denote

the corresponding Cayley graph. A combing of G is a choice, for each g ∈ G, of a

path in Γ from the identity vertex to g (i.e. a word in the generators that multiplies

to g).
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If σ1σ2 · · ·σ` and τ1τ2 · · · τm are words in Σ, the synchronous distance between

these words is:

max
n∈N

d(σ1 · · ·σn, τ1 · · · τn)

where d denotes the distance function in the Cayley graph, σi = 1 for i > `, and

τi = 1 for i > m.

Definition 1.5.13. Let G be a group with finite generating set Σ. A combing of

G has the fellow traveller property if, given any two elements of G a distance one

apart, the corresponding combing paths have synchronous distance at most k, for

some fixed k ∈ N.

Definition 1.5.14. Let G be a group with finite generating set Σ. We say that G

is automatic if there exists a combing of G that has the fellow traveller property

and whose set of combing paths is a regular language over Σ ∪ Σ−1.

It turns out that this definition does not depend on the finite generating set Σ.

See [ECH] for a thorough introduction to automatic groups.

Question 1.5.15. Is F automatic?

In [Guba2], V. Guba shows that the Dehn function of F is quadratic. (Any

automatic group has linear or quadratic Dehn function.) In section 6.4, we will

show that F no geodesic combing of F (with respect to the {x0, x1} generating

set) has the fellow traveller property.

1.6 Alternate Descriptions

Thompson’s Group F has arisen naturally in a variety of different contexts, and

this has led to several different ways of defining the group. We have adopted
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the “homeomorphism” point of view: every element of F is a piecewise-linear

homeomorphism of [0, 1]. In this section, we will describe three alternate definitions

of F , and explain why they are equivalent to the homeomorphism definition.

We begin with Thompson’s original definition:

Associative Laws

An associative law is any rule for rearranging a parenthesized expression. For

example, one associative law is the rule:

x0 : (ab)c → a(bc)

This rule can be applied to any expression whose left part is nontrivial, e.g.:

(
(ab)(cd)

)(
e(fg)

)
→ (ab)

(
(cd)(e(fg))

)
However, x0 can only be applied to the top level of an expression. In particular,

the rearrangement:

x1 : a
(
(bc)d

)
→ a

(
b(cd)

)
is not an application of x0.

We can compose two associative laws by performing one and then the other.

For example, starting with the expression:

(
a(bc)

)
d

we can perform x0:

a
(
(bc)d

)
and then x1:

a
(
b(cd)

)
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This yields a new, composite law:

x0x1 :
(
a(bc)

)
d → a

(
b(cd)

)
Theorem 1.6.1. The set of all associative laws forms a group under composition,

and this group is isomorphic with Thompson’s group F .

Sketch of Proof. Any parenthesized expression corresponds to a finite binary tree.

For example, the expression:

(
a(bc)

)
(de)

corresponds to the tree:

A rearrangement of parentheses is really just a tree diagram for an element of F .

Observe that two rearrangements are instances of the same associative law if and

only if the corresponding tree diagrams represent the same element of F . Ob-

serve also that the rule for composing associative laws is the same as the rule for

multiplying tree diagrams.

Automorphisms of Cantor Algebras

This point of view was introduced by Galvin and Thompson, and used by Brown

in [Bro] to show that F has type F∞. Brown’s paper actually considers a whole

class of groups defined by Higman [Hig] using automorphisms of Cantor algebras

(which Brown refers to as Jónsson-Tarski algebras), and proves finiteness results

for all of them.
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Definition 1.6.2. A Cantor algebra is a set A together with a bijection

α : A→ A× A.

We will denote the components of α(a) by (a)0 and (a)1. Also, if a, b ∈ A, we

will denote by ab the element of A satisfying

(ab)0 = a and (ab)1 = b

Using the theory of universal algebras, it is easy to show that there exists a free

Cantor Algebra A(X) over any set X. This algebra may be constructed explicitly

as follows (see [Hig]):

Base Case Given any x ∈ X and any word ε1 · · · εn in {0, 1}, define a

corresponding element xε1···εn . By definition, these elements satisfy:

(xε1···εn)0 = xε1···εn0 and (xε1···εn)1 = xε1···εn1

Induction Step Suppose we have defined a, b ∈ A(X) but we have not yet

defined any element c such that (c)0 = a and (c)1 = b. Then we define an

element ab satisfying:

(ab)0 = a and (ab)1 = b

In the case where X is a singleton set, it is helpful to think of the unique element

x as the interval {[0, 1]}, and the elements xε1···εn as standard dyadic subintervals

of {[0, 1]} (e.g. x0 = [0, 1/2] and x011 = [3/8, 4/8]). Each element created during

the induction step can be thought of as a mapping from some disjoint union of

these intervals linearly onto the intervals of some dyadic subdivision of {[0, 1]}.

(For example, (x0x0)x1 maps the disjoint union [0, 1/2] ] [0, 1/2] ] [1/2, 1] onto

[0, 1/4] ] [1/4, 1/2] ] [1/2, 1].)
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Definition 1.6.3. Thompson’s group V is the automorphism group of the free

Cantor algebra A({x}).

Observe that the free algebra generated by a singleton set {x} is isomorphic to

the free algebra generated by a doubleton set {a, b}, under the mapping:

a→ (x)0 and b→ (x)1

That is, the elements {x0, x1} are a basis for the free Cantor algebra A({x}). More

generally, if {a1 . . . an} is a basis for a free Cantor algebra, a simple expansion of

this basis is obtained by replacing the element ai with the elements (ai)0 and (ai)1.

The inverse of an expansion (i.e. picking any two elements of a basis and replacing

them with their product) is called a simple contraction. Higman [Hig] proves that

any basis for A(x) can be obtained from {x} by a sequence of simple expansions

followed by a sequence of simple contractions. Therefore, an element of V can be

represented by a pair of binary trees together with some bijection of their leaves:

 

The root of the top tree represents the basis {x}, while the root of the bottom tree

represents the image of x under the automorphism. The trees and permutation

represent the expansions and contractions necessary to get from x to its image.

Thompson’s group F is the subgroup of V consisting of tree diagrams whose

permutation part is trivial. In particular, given an ordered basis:

{a1, . . . , an}
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for a Cantor algebra, an simple ordered expansion of this basis is any basis of the

form:

{a1, . . . , (ai)0, (ai)1, . . . , an}

A simple ordered contraction is the inverse of a simple ordered expansion. An

automorphism f : A({x})→ A({x}) is order-preserving if the basis {f(x)} can be

obtained from the basis {x} by a sequence of simple ordered expansions and simple

ordered contractions.

Theorem 1.6.4. The group of order-preserving automorphisms of A({x}) is iso-

morphic with Thompson’s group F .

F as the Universal Conjugacy Idempotent

The group F was independently rediscovered by Freyd and Heller in 1969 (see

[FrHe]) during their investigation into homotopy-idempotent homeomorphisms of

topological spaces. They (and also independently Dydak [Dy]) developed F as the

universal example of a group with a conjugacy-idempotent endomorphism. This

point of view motivated Brown and Geoghegan [BrGe] to investigate the finiteness

properties of F .

Definition 1.6.5. Let G be a group. An endomorphism ϕ of G is conjugacy

idempotent if there exists a c ∈ G such that:

ϕ2(g) = c−1ϕ(g)c

for every g ∈ G.

We shall refer to the element c as a conjugator for ϕ.
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Let σ : F → F denote the shift endomorphism:

σ(x0) = x1, σ(x1) = x2, σ(x2) = x3, . . .

Then σ is conjugacy idempotent, with conjugator x0:

σ2(f) = x−1
0 σ(f)x0

Furthermore, the triple (F, σ, x0) has the following universal property:

Theorem 1.6.6. Suppose we are given any triple (G,ϕ, c), where G is a group

and ϕ is a conjugacy idempotent on G with conjugator c. Then there exists a

unique homomorphism π : F → G such that π(x0) = c and the following diagram

commutes:

F

π
��

σ // F

π
��

G ϕ
// G

Proof. Define π as follows:

π(x0) = c, π(x1) = ϕ(c), π(x2) = ϕ2(c), . . .

We must show that this respects the relations in F . Well, for n > k,

π(xk)
−1 π(xn) π(xk) = ϕk(c)−1 ϕn(c)ϕk(c)

= ϕk
(
c−1ϕn−k(c) c

)
= ϕk

(
ϕn−k+1(c)

)
= ϕn+1(c)

= π(xn+1)

The homomorphism π is therefore well-defined, and clearly it has the required

properties. Furthermore, π is unique because it is required to satisfy π(x0) = c, and

then the definitions of π(x1), π(x2), . . . follow from the commutative diagram.
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Freyd and Heller were interested in conjugacy idempotents because of their re-

lationship with topology. If Y is a topological space with basepoint y0, a homotopy

idempotent on Y is a map g : (Y, y0) → (Y, y0) such that g2 is freely homotopic

to g. It is easy to check that a homotopy idempotent map induces a conjugacy

idempotent endomorphism on π1(Y, y0). Freyd and Heller were interested in the

question of whether every homotopy idempotent splits, i.e. can be written as hk

where kh ' id (see [FrHe]). They answered this question in the negative by show-

ing that the conjugacy idempotent σ : F → F does not split, and then exporting

this result back to the homotopy category. (The same result was independently

obtained by Dyadak [Dy].)



Chapter 2

One-Way Forest Diagrams
In this chapter we introduce one-way forest diagrams for elements of F . These

diagrams have the same relationship to a certain action of F on the positive real

line that tree diagrams have to the standard action of F on the unit interval.

The advantage is that forest diagrams are somewhat simpler, especially in their

interactions with the generating set {x0, x1, x2, . . . }.

The existence of one-way forest diagrams was noted by K. Brown in [Bro], but

to our knowledge no one has ever before used them to study F .

2.1 The Group PL2(R+)

Let PL2(R+) be the group of all piecewise-linear self-homeomorphisms f of [0,∞)

satisfying the following conditions:

1. Each linear segment of f has slope a power of 2.

2. f has only finitely many breakpoints, each of which has dyadic rational co-

ordinates.

3. The rightmost segment of f is of the form:

f(t) = t+m

for some integer m.

Proposition 2.1.1. PL2(R+) is isomorphic with F .

Proof. Let ψ : [0,∞) → [0, 1) be the piecewise-linear homeomorphism that maps

the intervals:

31
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 �
 �  

�
 �  �  �  

linearly onto the intervals:

 �
 �  �

 

�
 �
 

�
 

�
 �
 �  

Then f 7→ ψfψ−1 is the desired isomorphism F → PL2(R+). In particular, if f

has slope 2m at t = 1, then the final linear segment of ψfψ−1 will be t 7→ t+m.

Under this isomorphism, each generator xn of F maps to the piecewise-linear

function xn : [0,∞)→ [0,∞) satisfying:

1. xn is the identity on [0, n].

2. xn sends [n, n+ 1] linearly onto [n, n+ 2].

3. xn(t) = t+ 1 for t ≥ n+ 1.

2.2 Forest Diagrams for Elements of PL2(R+)

We think of the positive real line as being pre-subdivided as follows:

 �
 �  

�
 �  �  �  

A dyadic subdivision of [0,∞) is any subdivision obtained by cutting finitely many

of these intervals in half, and then cutting finitely many of the resulting intervals

in half, etc.

Proposition 2.2.1. Let f ∈ PL2(R+). Then there exist dyadic subdivisions D,R

of [0,∞) such that f maps each interval of D linearly onto an interval of R.

A binary forest is a sequence (T0, T1, . . . ) of finite binary trees:
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�  

A binary forest is bounded if only finitely many of the trees Ti are nontrivial.

Every bounded binary forest corresponds to some dyadic subdivision of the

positive real line. For example, the forest above corresponds to the subdivision:

 �
 �  

�
 �  �  �  

Each tree Ti represents an interval [i, i+ 1], and each leaf represents an interval of

the subdivision.

Combining this with proposition 2.2.1, we see that any f ∈ PL2(R+) can be

represented by a pair of bounded binary forests. This is called a (one-way) forest

diagram for f

Example 2.2.2. Let f be the element of PL2(R+) with graph:

 

�
 

�
 

�
 

�
 �

 �  

�
 �

 �  �
 

Then f has forest diagram:

 
�

Again, we have aligned the two forests vertically so that the corresponding leaves

match up.

Example 2.2.3. Here are the forest diagrams for the generators x0, x1, x2, . . . :
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â

â

â

B
�
À  

B � À  

B � À  

Of course, there are several forest diagrams for each element of PL2(R+). In

particular, it is possible to delete an opposing pair of carets:

 

without changing the resulting homeomorphism. This is called a reduction of a

forest diagram. A forest diagram is reduced if it does not have any opposing pairs

of carets.

Proposition 2.2.4. Every element of PL2(R+) has a unique reduced forest dia-

gram.

Remark 2.2.5. From this point forward, we will omit all the trivial trees on the

right side of a forest diagram, as well as the “· · · ” indicators.

Remark 2.2.6. It is fairly easy to translate between tree diagrams and forest

diagrams. Given a tree diagram:
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we simply remove the right stalk of each tree to get the corresponding forest dia-

gram:

 

2.3 The Action of the Generators

The action of the generators {x0, x1, x2, . . . } on forest diagrams is particularly nice:

Proposition 2.3.1. Let f be a forest diagram for some f ∈ F . Then a forest

diagram for xnf can be obtained by attaching a caret to the roots of trees n and

(n+ 1) in the top forest of f.

Note that the forest diagram given for xnf may not be reduced, even if we

started with a reduced forest diagram f. In particular, the caret that was created

could oppose a caret in the bottom forest. In this case, left-multiplication by xn

effectively “cancels” the bottom caret.
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Example 2.3.2. Let f ∈ F have forest diagram:

 

Then x0f has forest diagram:

 

x1f has forest diagram:

 

and x2f has forest diagram:

 

Example 2.3.3. Let f ∈ F have forest diagram:

 

Then x2f has forest diagram:

 

Note that left-multiplication by x2 cancelled the highlighted bottom caret.



37

Proposition 2.3.4. Let f be a forest diagram for some f ∈ F . Then a forest

diagram for x−1
n f can be obtained by “dropping a negative caret” at position n. If

tree n is nontrivial, the negative caret cancels with the top caret of this tree. If the

tree n is trivial, the negative caret “falls through” to the bottom forest, attaching

to the specified leaf.

Example 2.3.5. Let f and g be the elements of F with forest diagrams:

 

and 

Then x−1
1 f and x−1

1 g have forest diagrams:

 
and 

In the first case, the x−1
1 simply removed a caret from the top tree. In the second

case, there was no caret on the top to remove, so a new caret was attached to the

leaf on the bottom. Note that this creates a new column in the forest diagram.

2.4 Positive Elements and Normal Forms

In this section, we use forest diagrams to derive the standard presentation for

Thompson’s group F (previously stated as theorem 1.3.6) and find a normal form

for elements of F (previously stated as theorem 1.3.7). The proof involves first

understanding the structure of the positive monoid, and then extending this un-

derstanding to all of F .

Recall that the positive submonoid of F generated by {x0, x1, x2, . . . }.
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Proposition 2.4.1. Let f ∈ F , and let f be its reduced forest diagram. Then f is

positive if and only if the bottom forest of f is trivial.

The positive monoid can be thought of as a monoid of binary forests. Each

element corresponds to a binary forest, and two forests can multiplied by “stacking

them”, i.e. by attaching the leaves of the first forest to the roots of the second.

Example 2.4.2. Let f have forest diagram:

 

and let g have forest diagram:

 

Then fg has forest diagram

 

Each word for a positive element corresponds to an ordering of the carets of

the forest diagram (namely, the order in which the carets are constructed).

Example 2.4.3. Let f be the element:

 
�  

�
 

�  �  

�
 

If we build the carets of f from right to left (a–b–c–d–e), we get the word:

f = x0x2x3x5x5
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(Note that the order of the generators in the word is the opposite of the order in

which the carets are created, since our primary operation is left-multiplication.)

There are many other words for f (30 in all), corresponding to different order-

ings of the carets. For example, if we build carets from left to right (e–c–d–a–b),

we get the word:

f = x2x2x1x2x0

If we build carets in the order c–e–a–d–b, we get the word:

f = x2x1x3x0x3

In general, we get the normal form for a positive element by building the carets

of its forest diagram from right to left:

Theorem 2.4.4. Every positive element can be expressed uniquely in the form:

xi1 · · ·xin

where i1 ≤ · · · ≤ in.

Proof. See the following section for a more rigorous proof of this theorem.

The normal form is usually written:

xa0
0 x

a1
1 · · ·xan

n

The numbers a0, . . . , an are called the exponents of the element. To determine the

exponents of a positive element from its forest diagram, it is helpful to draw the

carets so that left edges are vertical, like this:
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When the forest diagram is drawn in this fashion, the exponent ai appears as

the number of nodes sitting directly above the i’th leaf. For example, the above

element has normal form:

x0 x
2
2 x4 x

2
6 x9 x10

Proposition 2.4.5. The positive monoid has presentation:

〈x0, x1, x2, . . . | xnxk = xkxn+1 for k < n〉

Proof. The given relations clearly hold: they arise from the two different ways of

constructing the element:

 �  �  
�
 �  �  �  �  �  �  �  

To show that these relations suffice, we simply observe that any word can be put

into normal form by applying the operations:

xnxk → xkxn+1 (k < n)

To show that the same presentation holds for F , we observe that F is the group

of fractions of its positive monoid.

Definition 2.4.6. Let M be any monoid. A group of right fractions for M is a

group G containing M with the property that any element of G can be written as

pq−1 for some p, q ∈M .

It is easy to determine the presentation for a group of fractions:

Proposition 2.4.7. Suppose that M is a monoid with group of right fractions G.

Then any presentation for M is a presentation for G.
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Proof. This follows immediately from the fact that G is the universal group to

which M maps homomorphically. See [ClPr].

Theorem 2.4.8. Thompson’s group F has presentation:

〈x0, x1, x2, . . . | xnxk = xkxn + 1 for k < n〉

Next we wish to derive a normal form for elements of F . The key is to under-

stand when the forest diagram corresponding to an expression:

xa00 x
a1
1 · · ·xan

n x
−bn
n · · ·x−b11 x−b00

is reduced.

An exposed caret in a forest is a caret whose children are both leaves:

 

A forest diagram is reduced if and only if it does not contain a matching pair of

exposed carets.

Lemma 2.4.9. Let xi1 · · ·xin be the normal form for a given positive element f .

Then the caret constructed by xik is exposed if and only if k = n or ik < ik+1 − 1.

Proof. A caret is exposed if and only if it is allowed to be the first caret created

when constructing f . Hence, xin is exposed if and only if we can move that

generator all the way to the right in the word for f , using operations of the form:

xkxn → xn−1xk (k < n− 1)

Such movement is possible if and only if ik < ik+1 − 1.
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Theorem 2.4.10 (Normal Form). Every element of F can be expressed uniquely

in the form:

xa0
0 · · ·xan

n x
−bn
n · · ·x−b00

where exactly one of an, bn 6= 0 and

ai 6= 0 and bi 6= 0 ⇒ ai+1 6= 0 or bi+1 6= 0

Proof. The top forest has an exposed caret in the i’th position if and only if ai 6= 0

and ai+1 = 0, and the bottom forest has an exposed caret in the i’th position if

and only if bi 6= 0 and bi+1 = 0. As long as these never happen simultaneously, the

above expression will represent a reduced forest diagram.

2.5 Word Graphs and Anti-Normal Form

The word graph for a positive element f is the directed graph whose vertices are

words for f in the generators x0, x1, x2, . . . and whose edges represent moves of the

form:

xnxk → xkxn+1 (n > k)

Example 2.5.1. Let f be the element:

 

Then f has word graph:

 

B
�
B � B �  

B � B � B �  

B � B � B �  

B � B �
B �  

B � B � B �  

B
�
B � B �  
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Example 2.5.2. Let f be the element:

 

Then f has word graph:

 B
���
B � B �  

B
�
B � B

�
B �  

B � B ���
B �  B

�
B � B � B �  

B � B �
B � B �  

B � B � B
���  

Example 2.5.3. Let f be the element:

 

Then f has word graph:
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 B
�
B � B � B �  

B � B �
B � B �  B

�
B � B � B �  

B � B �
B � B �  B � B � B �

B �  

B � B � B �
B �  B � B � B � B �  

B � B � B � B �  

B
�
B � B � B �  

B � B �
B � B �  

B � B � B �
B �  

B � B � B � B �  

It seems that each word graph has a unique terminal vertex, namely the normal

form, and a unique initial vertex, which we shall call the anti-normal form.

Definition 2.5.4. A word:

xin · · ·xi1

is in anti-normal form if ik+1 ≥ ik − 1 for all k.

The anti-normal form corresponds to building the carets of a forest diagram

from left to right.

Guba and Sapir used anti-normal forms in [GuSa2] to prove that F has a

subexponential Dehn function. (Guba [Guba2] has since shown that the Dehn

function of F is quadratic.) In section 4.1, we will show that the anti-normal

form describes a minimum-length word for any positive element with respect to

the {x0, x1} generating set.

Proposition 2.5.5. Let f be any positive element. Then any terminal vertex in
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the word graph for f is in normal form, and any initial vertex is in anti-normal

form.

Proof. Consider a word xin . . . xi1 for f . This word will have an outgoing edge if and

only if ik+1 > ik for some k (so that we can apply the move xik+1
xik → xikxik+1+1).

Similarly, this word will have an incoming edge if and only if ik+1 < ik−1 for some

k (so that we can apply the inverse move xik+1
xik → xik−1xik+1

).

This proposition gives a nice algorithm for putting a word into either normal

form or anti-normal form. To put a word into normal form, repeatedly apply moves

of the type:

xnxk → xkxn+1 (n > k)

Similarly, to put a word into anti-normal form, repeatedly apply moves of the type:

xkxn → xn−1xk (k < n− 1)

See example 4.1.9.

We wish to show that the anti-normal form for an element is unique. The idea,

of course, is that anti-normal form corresponds to the unique way of constructing

the carets of a forest diagram from left to right. We shall now establish some

notation that makes this idea very precise.

Let� denote the linear order on the carets of a forest diagram induced by the

order of the spaces that the carets cover:

 " 

#  
$  

%  &  

'  

(  

" ¥  #  ¥  $  ¥  %  ¥  &  ¥  '  ¥  (  
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and let ≺ denote the partial order defined by:

c1 ≺ c2 ⇔ c1 is a descendant of c2

(In the above forest, 2 ≺ 3 ≺ 1 and 5, 7 ≺ 6.) Define relations <N and <AN as

follows:

c1 <N c2 ⇔ c1 ≺ c2 or (c1 � c2 and c1 � c2)

c1 <AN c2 ⇔ c1 ≺ c2 or (c1 � c2 and c1 � c2)

It is not hard to check that <N and <AN are linear orders. Furthermore:

Proposition 2.5.6. Let xin · · ·xi1 be a word for a positive element f , and let ck

denote the caret in the reduced forest diagram for f built by xik . Then:

1. The given word is in normal form if and only if ck <N ck+1 for each k.

2. The given word is in anti-normal form if and only if ck <AN ck+1 for each k.

Proof. Observe that ck ≺ ck+1 if and only if ik+1 = ik or ik+1 = ik − 1. Further,

ck � ck+1 if and only if ik ≤ ik+1. Therefore:

ck <N ck+1 ⇔ ik+1 ≤ ik

ck <AN ck+1 ⇔ ik+1 ≥ ik − 1

Corollary 2.5.7. Every positive element has a unique normal form and a unique

anti-normal form.

Next we would like to explain the structure of the word graph. Given a finite

set S, the order graph Γ(S) on S is the graph whose vertices are linear orders

on the elements of S, and whose edges correspond to transpositions of adjacent

elements. For example, Γ({1, 2, 3}) is:
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� � �
 

� � �
 

� � �
 

� � �
 

� � �
 

� � �
 

The order graph of a set with n elements is isomorphic to the Cayley graph of the

symmetric group Σn with generating set {(1 2), (2 3), . . . , (n − 1 n)}. Recall

that Σn has presentation:

〈t1, . . . tn−1 | t2i = 1, titi+1ti = ti+1titi+1, titj = tjti for i− j > 2〉

where ti = (i i + 1). Therefore, any order graph is the one-skeleton of a cell

complex whose two-skeleton is a union of hexagons and squares.

If f is a positive element, the word graph for f is a subgraph of Γ(C), where

C is the set of carets in the reduced forest diagram for f . In particular, any word

corresponds to a certain order of building the carets, and any move of the form:

xnxk → xkxn+1 (n > k)

corresponds to transposing the order of two adjacent carets.

For the following theorem, recall that a set of vertices S in a graph is convex

if, whenever v, w ∈ S, any vertex that appears on any geodesic from v to w is also

in S. The convex hull of S is the intersection of all convex sets containing S.

Theorem 2.5.8. Let f be a positive element, and let C be the set of carets in the

reduced forest diagram for f . Then the word graph for f is the convex hull in Γ(C)

of the normal and anti-normal forms for f .
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Proof. Given a set S, a half-space in Γ(S) is a set of the form:

{s1 < s2} = {linear orders < on S | s1 < s2}

where s and t are fixed elements of S. It is a well-known fact that any convex

subset of Γ(S) is an intersection of half-spaces. (See [Bro2], section A.7.)

The vertices in the word graph are precisely the linear orders on C that are

extensions of the partial order ≺. In particular, the word graph is precisely the

intersection of all half-spaces {c1 < c2} such that c1 ≺ c2. However, for any carets

c1, c2 ∈ C:

c1 ≺ c2 ⇔ c1 <N c2 and c1 <AN c2

Therefore, a half-space contains the word graph if and only if the half-space con-

tains both the normal form <N and the anti-normal form <AN.



Chapter 3

Two-Way Forest Diagrams
In this chapter, we use an action of F on the real line to construct two-way forest

diagrams. These forest diagrams interact very nicely with the finite generating set

{x0, x1}, and are therefore particularly well-suited for studying the geometry of F .

We will generally refer to two-way forest diagrams simply as forest diagrams.

We use the terminology “one-way forest diagrams” and “two-way forest diagrams”

only when there is some ambiguity.

The material in this chapter represents joint work with my thesis advisor,

Kenneth Brown. It was originally published in [BeBr].

3.1 The Group PL2(R)

Let PL2(R) be the group of all piecewise-linear, orientation-preserving self-homeo-

morphisms f of R satisfying the following conditions:

1. Each linear segment of f has slope a power of 2.

2. f has only finitely many breakpoints, each of which has dyadic rational co-

ordinates.

3. The leftmost linear segment of f is of the form:

f(t) = t+m

and the rightmost segment is of the form:

f(t) = t+ n

for some integers m,n.

49
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Proposition 3.1.1. PL2(R) is isomorphic with F .

Proof. Let ψ : R → (0, 1) be the piecewise-linear homeomorphism that maps the

intervals:

 
� �

 �  �  
�
 � �  

linearly onto the intervals:

 �
 �  �

 

�
 �
 

�
 

�
 �
 �  �  �

 �  �
 �  

Then f 7→ ψfψ−1 is the desired isomorphism F → PL2(R).

Under this isomorphism, the generators {x0, x1} of F map to the functions:

x0(t) = t+ 1

and:

x1(t) =



t t ≤ 0

2t 0 ≤ t ≤ 1

t+ 1 t ≥ 1

 

1 

2

� �  

3.2 Forest Diagrams for Elements of PL2(R)

We think of the real line as being pre-subdivided as follows:

 � �
 �  �  

�
 � �  

A dyadic subdivision of R is a subdivision obtained by cutting finitely many of

these intervals in half, and then cutting finitely many of the resulting intervals in

half, etc.
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Proposition 3.2.1. Let f ∈ PL2(R). Then there exist dyadic subdivisions D,R

of R such that f maps each interval of D linearly onto an interval of R.

A two-way binary forest is a sequence (. . . , T−1, T0, T1, . . . ) of finite binary

trees. We depict such a forest as a line of binary trees together with a pointer

at T0:

 

�  �  

Every bounded, two-way binary forest corresponds to some dyadic subdivision of

the real line. Therefore, any f ∈ PL2(R) can be represented by a pair of bounded

binary forests, together with an order-preserving bijection of their leaves. This is

called a two-way forest diagram for f .

Example 3.2.2. Here are the two-way forest diagrams for x0 and x1:

 

�  

�  

� � �  

� � �  

�  

�  

Proposition 3.2.3. Every element of PL2(R) has a unique reduced two-way forest

diagram.

Remark 3.2.4. From this point forward, we will only draw the support of the

two-way forest diagram (i.e. the minimum interval containing both pointers and

all nontrivial trees), and we will omit the “· · · ” indicators.
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Also, the term “forest diagram” when used alone will always refer to two-way

forest diagrams.

Remark 3.2.5. It is fairly easy to translate between tree diagrams, one-way forest

diagrams, and two-way forest diagrams. Given a tree diagram:

 

we simply remove the outer layer of each tree to get the corresponding two-way

forest diagram:

 

The pointers of the forest diagram point to the first trees hanging to the right of

the roots in the original tree diagram.

Similarly, given a one-way forest diagram:
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simply remove the left stalk of 0-tree on the top and bottom to get the correspond-

ing two-way forest diagram:

 

The pointers of the two-way forest diagram point to the 1-trees of the original

one-way forest diagram.

3.3 The Action of {x0, x1}

Just as one-way forest diagrams interact well with the infinite generating set for F ,

two-way forest diagrams interact well with the {x0, x1} generating set:

Proposition 3.3.1. Let f be a forest diagram for some f ∈ F . Then:

1. A forest diagram for x0f can be obtained by moving the top pointer of f one

tree to the right.

2. A forest diagram for x1f can be obtained by attaching a caret to the roots of

the 0-tree and 1-tree in the top forest of f. Afterwards, the top pointer points

to the new, combined tree.

If f is reduced, then the given forest diagram for x0f will always be reduced.

The forest diagram given for x1f will not be reduced, however, if the caret that

was created opposes a caret from the bottom tree. In this case, left-multiplication

by x1 effectively “cancels” the bottom caret.
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Example 3.3.2. Let f ∈ F have forest diagram:

 

Then x0f has forest diagram:

 

and x1f has forest diagram:

 

Example 3.3.3. Let f ∈ F have forest diagram:

 

Then x0f has forest diagram:
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and x1f has forest diagram:

 

Note that the forest diagrams for x0f and x1f both have larger support than the

forest diagram for f .

Example 3.3.4. Let f ∈ F have forest diagram:

 

Then x1f has forest diagram:

 

Note that left-multiplication by x1 cancelled the highlighted bottom caret.

Proposition 3.3.5. Let f be a forest diagram for some f ∈ F . Then:

1. A forest diagram for x−1
0 f can be obtained by moving the top pointer of f one

tree to the left.
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2. A forest diagram for x−1
1 f can be obtained by “dropping a negative caret” at

the current position of the top pointer. If the current tree is nontrivial, the

negative caret cancels with the top caret of the current tree, and the pointer

moves to the resulting left child. If the current tree is trivial, the negative

caret “falls through” to the bottom forest, attaching to the specified leaf.

Example 3.3.6. Let f and g be the elements of F with forest diagrams:

 

and 

Then x−1
1 f and x−1

1 g have forest diagrams:

 

and 

In the first case, the x−1
1 simply removed a caret from the top tree. In the second

case, there was no caret on top to remove, so a new caret was attached to the leaf

on the bottom. Note that this creates a new column immediately to the right of

the pointer.

3.4 Normal Forms and Positive Elements

The other generators of F act on two-way forest diagrams in the following way:

Proposition 3.4.1. Let f be the forest diagram for some f ∈ F , and let n > 1.

Then a forest diagram for xnf can be obtained by attaching a caret to the roots of

Tn−1 and Tn in the top forest of f.
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Using this proposition, it is relatively easy to find the normal form from the

forest diagram, using a method similar to that given in section 2.4.

Example 3.4.2. Suppose f ∈ F has forest diagram:

 

Then:

f = x2
0x1x

2
3x4x

3
8

Since the top pointer of f is two trees from the left, the normal form of f has an

x2
0. The powers of the other generators are determined by the number of carets

built upon the corresponding leaf. Note that the carets are constructed from right

to left.

Example 3.4.3. The element:

x3
0x2x

2
5x7x

−1
6 x−1

5 x−2
1 x−1

0

has forest diagram:

 

Proposition 3.4.1 also yields a characterization of positive elements.
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Corollary 3.4.4. Let f ∈ F , and let f be its reduced forest diagram. Then f is

positive if and only if:

1. The entire bottom forest of f is trivial, and

2. The bottom pointer is at the left end of the support of f.

So a typical positive element looks like:

 

An element of f is right-sided if both pointers are at the left end of the support.

The monoid of right-sided elements is generated by {x1, x2, . . . , x
−1
1 , x−1

2 , . . . }.

An element which is both positive and right-sided is called strongly positive.

The monoid of strongly positive elements is generated by {x1, x2 . . . }.



Chapter 4

Lengths in F
In this chapter, we derive a formula for the lengths of elements of F with respect

to the {x0, x1} generating set. This formula uses the two-way forest diagrams

introduced in chapter 3.

Lengths in F were first studied by S. B. Fordham in his 1995 thesis (recently

published, see [Ford]). Fordham gave a formula for the length of an element of F

based on its tree diagram. Our length formula can be viewed as a simplification

of Fordham’s work.

V. Guba has recently obtained another length formula for F using the “dia-

grams” of Guba and Sapir. See [Guba] for details.

The material in this chapter represents joint work with my thesis advisor,

Kenneth Brown. It was originally published in [BeBr].

4.1 Lengths of Strongly Positive Elements

We shall begin by investigating the lengths of strongly positive elements. The goal

is to develop some intuition for lengths before the statement of the general length

formula in section 4.2.

Recall that an element is strongly positive if it lies in the submonoid generated

by {x1, x2, . . . }. Equivalently, f is strongly positive if and only if the entire bottom

forest of f is trivial and both pointers are at the left edge of the support:

59



60

 

Logically, the results of this section depend on the general length formula. In

particular, we need the following lemma:

Lemma 4.1.1. Let f ∈ F be strongly positive. Then there exists a minimum-length

word for f with no appearances of x−1
1 .

This lemma is intuitively obvious: there should be no reason to ever create bot-

tom carets, or to delete top carets, when constructing a strongly positive element.

Unfortunately, it would be rather tricky to supply a proof of this fact. Instead we

refer the reader to corollary 4.3.8, from which the lemma follows immediately.

From this lemma, we see that any strongly positive element f ∈ F has a

minimum-length word of the form:

xan
0 x1 · · ·xa1

0 x1x
a0
0

where a0, . . . , an ∈ Z. Since f is strongly positive, we have:

a0 + · · ·+ an = 0

and

a0 + · · ·+ ai ≥ 0 (for i = 0, . . . , n− 1)

Such words can be represented by words in {x1, x2, . . . } via the identifications

xn = x1−n
0 x1x

n−1
0 . For example, the word:

x−5
0 x1 x

−2
0 x1 x

4
0 x1 x

−3
0 x1 x

6
0
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can be represented by:

x6 x8 x4 x7

More generally:

Notation 4.1.2. We will use the word:

xin · · ·xi2xi1

in {x1, x2, . . . } to represent the word:

x1−in
0 x1 · · · xi3−i20 x1 x

i2−i1
0 x1 x

i1−1
0

in {x0, x1}.

Note then that xin · · ·xi2xi1 represents a word with length:

(|1− in|+ · · ·+ |i3 − i2|+ |i2 − i1|+ |i1 − 1|) + n

We now proceed to some examples, from which we will derive a general theorem.

Example 4.1.3. Let f ∈ F be the element with forest diagram:

 

There are only two candidate minimum-length words for f : x3x8 and x7x3. Their

lengths are:

(2 + 5 + 7) + 2 = 16 for the word x3x8

and (6 + 4 + 2) + 2 = 14 for the word x7x3.

Let’s see if we can explain this. The word x3x8 = x−2
0 x1x

−5
0 x1x

7
0 corresponds to

the following construction of f :
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1. Starting at the identity, move right seven times and construct the right caret.

2. Next move left five times, and construct the left caret.

3. Finally, move left twice to position of the bottom pointer.

This word makes a total of fourteen moves, crossing twice over each of seven spaces:

 
�
 

�
 

�
 

�
 

�
 

�
 

�
 

On the other hand, the word x7x3 = x−6
0 x1x

4
0x1x

2
0 corresponds to the following

construction:

1. Starting at the identity, move right twice and construct the left caret.

2. Next move right four more times, and construct the right caret.

3. Finally, move left six times to the position of the bottom pointer.

This word makes only twelve moves:

 
�
 

�
 

�
 

�
 

�
 

�
 

In particular, this word never moves across the space under the left caret. It avoids

this by building the left caret early. Once the left caret is built, the word can simply

pass over the space under the left caret without spending time to move across it.

Terminology 4.1.4. We call a space in a forest interior if it lies under a tree (or

over a tree, if the forest is upside-down) and exterior if it lies between two trees.
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Example 4.1.5. Let f ∈ F be the element with forest diagram:

 

�
 

�
 

�
 

�
 

�
 

Clearly, each of the five exterior spaces in the support of f must be crossed twice

during construction. Furthermore, it is possible to avoid crossing any of the interior

spaces by constructing carets from left to right. In particular:

x3
6 x5 x

2
2

is a minimum-length word for f . Therefore, f has length:

(5 + 1 + 3 + 1) + 6 = 16

It is not always possible to avoid crossing all the interior spaces:

Example 4.1.6. Let f ∈ F be the element with forest diagram:

 

�
 

�
 ? 

Clearly, each of the two exterior spaces in the support of f must be crossed twice

during construction. However, the space marked (?) must also be crossed twice,

since we must create the caret immediately to its right before we can create the

caret above it.

It turns out that these are the only spaces which must be crossed. For example,

the word:

x3 x4 x3 x1
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crosses only these spaces. Therefore, f has length:

(2 + 1 + 1 + 2 + 0) + 4 = 10

Recall that a word:

xin · · ·xi2xi1

is in anti-normal form if ik+1 ≥ ik− 1 for all k. While normal form corresponds to

building carets from right to left, anti-normal form corresponds to building carets

from left to right (i.e. constructing the leftmost possible caret at each stage).

As we have seen, the anti-normal form for a strongly positive element has

minimum length, since it crosses only those spaces that must be crossed. We can

get an explicit length formula by counting these spaces:

Theorem 4.1.7. Let f ∈ F be strongly positive. Then the length of f is:

2n(f) + c(f)

where:

1. n (f) is the number of spaces in the support of f that are either exterior or

lie immediately to the left of some caret, and

2. c (f) is the number of carets of f .

Example 4.1.8. Let f ∈ F be the element with forest diagram:

 

�
 

�
 

�
 

�
 

�
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Then c(f) = 8 and n(f) = 5, so f has length 18. The anti-normal form for f is:

x4x
2
5x4x2x3x

2
1

Therefore, a minimum-length {x0, x1}-word for f is:

x−3
0 x1x

−1
0 x2

1x0x1x
2
0x1x

−1
0 x1x

2
0x

2
1

Because the anti-normal form is the unique terminal vertex in the word graph

(see section 2.5), we can put any positive element into anti-normal form by repeat-

edly applying the operations:

xkxn → xn−1xk (k < n− 1)

This gives us an entirely algebraic algorithm for finding the length of an element.

Example 4.1.9. Let’s find the length of the element:

x1 x
3
3 x6 x7 x10

We put the word into anti-normal form:

x1 x
3
3 x6 x7 x10

= x4 x1 x
3
3 x6 x7

= x4 x
3
2 x5 x6 x1

= x4 x2 x3 x4 x
2
2 x1

(x10 moved left)

(x1 moved right)

(x2
2 moved right)

Therefore, the length is:

(3 + 2 + 1 + 1 + 2 + 1 + 0) + 7 = 17
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4.2 The Length Formula

We now give the length formula for a general element of F . Afterwards, we will

give several examples to illustrate intuitively why the formula works. We defer the

proof to section 4.3.

Let f ∈ F , and let f be its reduced forest diagram. We label the spaces of each

forest of f as follows:

1. Label a space L (for left) if it exterior and to the left of the pointer.

2. Label a space N (for necessary) if it lies immediately to the left of some caret

(and is not already labeled L).

3. Label a space R (for right) if it exterior and to the right of the pointer (and

not already labeled N).

4. Label a space I (for interior) if it interior (and not already labeled N).

We assign a weight to each space in the support of f according to its labels:

top

label

bottom label

L N R I

L 2 1 1 1

N 1 2 2 2

R 1 2 2 0

I 1 2 0 0
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Example 4.2.1. Here are the labels and weights for a typical forest diagram:

 

" 
I 

L 
" 
L 

N 
" 
L 

I 
#  
L 

L 
" 
I 

L 
" 
R 

L 
#  
N 

I 
!  
I 

I 
#  
R 

R 
#  
N 

R 
#  
N 

N 
#  
I 

N 
!  
R 

I 

Theorem 4.2.2 (The Length Formula). Let f ∈ F , and let f be its reduced

forest diagram. Then the {x0, x1}-length of f is:

`(f) = `0(f) + `1(f)

where:

1. `0(f) is the sum of the weights of all spaces in the support of f, and

2. `1(f) is the total number of carets in f.

Remark 4.2.3. Intuitively, the weight of a space is just the number of times

it must be crossed during the construction of f . Hence, there ought to exist a

minimum-length word for f with `0(f) appearances of x0 or x−1
0 and `1(f) appear-

ances of x1 or x−1
1 . This will be established at the end of the next section.

Example 4.2.4. Let f ∈ F be the element from example 4.1.8:

 

�
 

I 

R 

�
 

N 

R 

�
 

R 

R 

�
 

N 

R 

�
 

I 

R 

�
 

I 

R 

�
 

I 

R 

�
 

N 

R 

�
 

I 

R 

�
 

N 

R 

�
 

I 

R 

Then `0(f) = 10 and `1(f) = 8, so f has length 18.
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In general, suppose f ∈ F is strongly positive, and let f be its reduced forest

diagram. Then every space of f is labeled

[
N
R

]
,

[
R
R

]
, or

[
I
R

]
. Each

[
I
R

]
space

has weight 0, and each

[
N
R

]
or

[
R
R

]
space has weight 2, so that:

`0(f) = 2n(f)

and hence:

`0(f) + `1(f) = 2n(f) + c(f)

Therefore, the length formula of theorem 4.2.2 reduces to theorem 4.1.7 for strongly

positive elements.

Example 4.2.5. Let f ∈ F be the right-sided element with forest diagram:

 

�
 

R 

I 

�
 

N 

R 

�
 

I 

I 

�
 

I 

R 

�
 

R 

R 

�
 

I 

N 

�
 

I 

N 

�
 

I 

N 

�
 

N 

I 

Then `0(f) = 12 and `1(f) = 10, so f has length 22. One minimum-length word

for f is:

x1x
−1
0 x−1

1 x0x
−1
1 x−3

0 x1x0x
3
1x
−1
0 x−1

1 x−1
0 x−1

1 x0x
−1
1 x3

0

In general, every space in the forest diagram of a right-sided element is labeled

either N, R, or I. The weight table for such spaces is:

top

label

bottom label

N R I

N 2 2 2

R 2 2 0

I 2 0 0
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Observe that a space has weight 2 if and only if:

1. It is exterior on both the top and the bottom, or

2. It lies immediately to the left of some caret, on either the top or the bottom.

This can be viewed as a generalization of the length formula for strongly positive

elements. Specifically, if f is right-sided, then:

`(f) = 2n(f) + c(f)

where n(f) is the number of spaces satisfying condition (1) or (2), and c(f) is the

number of carets of f .

As with strongly positive elements, it is intuitively obvious that this is a lower

bound for the length. Unfortunately, we have not been able to find an analogue of

the “anti-normal form” argument to show that it is an upper bound.

Example 4.2.6. Let f ∈ F be the left-sided element with forest diagram:

 

"   
N 

L 
# 
L 

L 
" 
I 

L 
" 
N 

L 
" 
I 

L 
# 
L 

L 
"  
I 

L 
" 
I 

L 
" 
I 

L 
# 
L 

L 
# 
L 

L 

Then `0(f) = 15 and `1(f) = 7, so f has length 22.

It is interesting to note that every interior space of f has weight 1: for trees

to the left of the pointer, one cannot avoid crossing interior spaces at least once.

Specifically, each caret is created from its left leaf, and we must move to this leaf

somehow.

One minimum-length word for f is

x4
0x

2
1x
−2
0 x1x

−3
0 x2

1x
−3
0 x1x

−1
0 x1x

−2
0

Note that this word creates carets right to left.
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Example 4.2.7. Let f ∈ F be the element with forest diagram:

 

�
 

I 

I 

�
 

I 

L 

�
 

N 

I 

�
 

L 

R 

�
 

I 

R 

�
 

R 

R 

�
 

L 

I 

�
 

N 

L 

�
 

L 

L 

�
 

I 

L 

�
 

L 

R 

�
 

N 

N 

�
 

N 

I 

�
 

I 

I 

Then `0(f) = 16 and `1(f) = 13, so f has length 29. One minimum-length word

for f is:

x−2
0 x1x

−1
0 x1x0x

−2
1 x2

0x1x
3
0x

2
1x0x

−2
1 x−1

0 x1x
−2
0 x1x

−1
0 x1x0x

−1
1 x−1

0

This is our first example with

[
L
R

]
pairs: note that they only need to be crossed

once. Also note how it affects the length to have bottom trees to the left of the

pointer. In particular, observe that the

[
N
I

]
pair to the left of the pointers must

crossed twice.

4.3 The Proof of the Length Formula

We prove the length formula using the same technique as Fordham [Ford]:

Theorem 4.3.1. Let G be a group with generating set S, and let ` : G → N be a

function. Then ` is the length function for G with respect to S if and only if:

1. `(e) = 0, where e is the identity of G.

2. |`(sg)− `(g)| ≤ 1 for all g ∈ G and s ∈ S.

3. If g ∈ G \ {e}, there exists an s ∈ S ∪ S−1 such that `(sg) < `(g).

Proof. Conditions (1) and (2) show that ` is a lower bound for the length, and

condition (3) shows that ` is an upper bound for the length.
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Let ` denote the function defined on F specified by Theorem 4.2.2. Clearly

` satisfies condition (1). To show that ` satisfies conditions (2) and (3), we need

only gather information about how left-multiplication by generators affects the

function `.

Terminology 4.3.2. If f ∈ F , the current tree of f is the tree in forest diagram

indicated by the top pointer. The right space of f is the space immediately to the

right of the current tree, and the left space of f is the space immediately to the

left of the current tree.

Note that, if the top pointer is at the right edge of the support of f , then the

right space of f has no label. Similarly, if the top pointer is at the left edge of the

support, then the left space of f has no label.

Proposition 4.3.3. If f ∈ F , then `(x0f) = `(f) ± 1. Specifically, `(x0f) < `(f)

unless one of the following conditions holds:

1. x0f has larger support than f .

2. The right space of f has bottom label L, and left-multiplication by x0 does

not remove this space from the support.

3. The right space of f is labeled

[
R
I

]
.

Proof. Clearly `1(x0f) = `1(f). As for `0, note that the only space whose label

changes is the right space of f .

Case 1 : Suppose x0f has larger support than f . Then the right space of f is

unlabeled, and has label

[
L
R

]
in x0f . Hence `0(x0f) = `0(f) + 1.

Case 2 : Suppose x0f has smaller support than f . Then the right space of f

has label

[
R
L

]
, but becomes unlabeled in x0f . Hence `0(x0f) = `0(f)− 1.
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Case 3 : Suppose x0f has the same support as f . Then the right space of f

has top label N or R, but top label L in x0f . The relevant rows of the weight

table are:

top

label

bottom label

L N R I

L 2 1 1 1

N 1 2 2 2

R 1 2 2 0

Each entry of the N and R rows differs from the corresponding entry of the L

row by exactly one. In particular, moving from an R or N row to an L row only

increases the weight when in the L column or when starting at

[
R
I

]
.

Corollary 4.3.4. Let f ∈ F . Then `(x−1
0 f) < `(f) if and only if one of the

following conditions holds:

1. x−1
0 f has smaller support than f .

2. The left space of f has label

[
L
L

]
.

3. The left space of f has label

[
L
I

]
, and the current tree is trivial.

Proposition 4.3.5. Let f ∈ F . If left-multiplying f by x1 cancels a caret from

the bottom forest, then `(x1f) = `(f)− 1.

Proof. Clearly `1(x1f) = `1(f)− 1. We must show that `0 remains unchanged.

Note first that the right space of f is destroyed. This space has label

[
R
I

]
, and

hence has weight 0. Therefore, its destruction does not affect `0.

The only other space affected is the left space of f . If this space is not in the

support of f , it remains unlabeled throughout. Otherwise, observe that it must
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have top label L in both f and x1f . The relevant row of the weight table is:

L N R I

L 2 1 1 1

In particular, the only important property of the bottom label is whether or not

it is an L. This property is unaffected by the deletion of the caret.

Proposition 4.3.6. Let f ∈ F , and suppose that left-multiplying f by x1 creates

a caret in the top forest. Then `(x1f) = `(f) ± 1. Specifically, `(x1f) = `(f) − 1

if and only if the right space of f has label

[
R
R

]
.

Proof. Clearly `1(x1f) = `1(f) + 1. As for `0, observe that the only space whose

label could change is the right space of f .

Case 1 : Suppose x1f has larger support than f . Then the right space of f is

unlabeled, but has label

[
I
R

]
in x1f . This does not affect the value of `0.

Case 2 : Otherwise, note that the right space of f has top label N or R. If

the top label is an N, it remains and N in x1f . If it is an R, then it changes to

an I. The relevant rows of the weight table are:

top

label

bottom label

L N R I

R 1 2 2 0

I 1 2 0 0

Observe that the weight decreases by two if the bottom label is an R, and stays

the same otherwise.

We have now verified condition (2). Also, we have gathered enough information

to verify condition (3):



74

Theorem 4.3.7. Let f ∈ F be a nonidentity element.

1. If current tree of f is nontrivial, then either `(x−1
1 f) < `(f), or `(x0f) < `(f).

2. If left-multiplication by x1 would remove a caret from the bottom tree, then

`(x1f) < `(f).

3. Otherwise, either `(x0f) < `(f) or `(x−1
0 f) < `(f).

Proof.

Statement 1 : If `(x−1
1 f) > `(f), then the right space of x−1

1 f has type

[
R
R

]
.

The right space of f therefore has type

[
R or N
R or N

]
, so that `(x0f) < `(f).

Statement 2 : See proposition 4.3.5.

Statement 3 : Suppose `(x0f) > `(f). There are three cases:

Case 1 : The right space of f is not in the support of f . Then the left space

of f has label

[
L
R

]
,

[
L
L

]
, or

[
L
I

]
. In all three cases, `(x−1

0 f) < `(f).

Case 2 : The right space of f has bottom label L, and right-multiplication by

x0 does not remove this space from the support. Then the left space of f must

have label

[
L
L

]
or

[
L
I

]
, and hence `(x−1

0 f) < `(f).

Case 3 : The right space of f has label

[
R
I

]
. Then the tree immediately to

the right of the top pointer is trivial, and the bottom leaf under it is a right leaf.

If the bottom leaf under the top pointer were a left leaf, then left-multiplying f

by x1 would cancel a caret. Hence, it is also a right leaf, so the left space of f has

label

[
L
I

]
. We conclude that `(x−1

0 f) < `(f).

Corollary 4.3.8. Let f ∈ F , and let f be the reduced forest diagram for f . Then

there exists a minimum-length word w for f with the following properties:

1. Each instance of x1 in w creates a top caret of f.
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2. Each instance of x−1
1 in w creates a bottom caret of f.

In particular, w has `1(f) instances of x1 or x−1
1 , and `0(f) instances of x0 or x−1

0 .

Proof. By the previous theorem, it is always possible to travel from f to the identity

in such a way that each left-multiplication by x1 deletes a bottom caret and each

left-multiplication by x−1
1 deletes a top caret.

Of course, not every minimum-length word for f is of the given form. We will

discuss this phenomenon in the next section.

4.4 Minimum-Length Words

In principle, the results from the last section specify an algorithm for finding

minimum-length words. (Given an element, find a generator which shortens it.

Repeat.) In practice, though, no algorithm is necessary: one can usually guess a

minimum-length word by staring at the forest diagram. Our goal in this section is

to convey this intuition.

Example 4.4.1. Let f be the element of F with forest diagram:

 

Then there is exactly one minimum-length word for f , namely:

x−3
0 ux0ux0ux0

where u = x2
1x
−1
0 x1x0. Note that the trees of f are constructed from left to right.

Similarly, f−1 has forest diagram:
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and the only minimum-length word for f−1 is:

x−1
0 u−1x−1

0 u−1x−1
0 u−1x3

0

Note that the trees of f−1 are constructed from right to left.

Example 4.4.2. Let f be the element of F with forest diagram:

 

There are precisely four minimum-length words for f :

x−3
0 v x0 v x0 v x0

x−1
0 v x−2

0 v x0 v x
2
0

x−2
0 v x−1

0 v x2
0 v x0

x−1
0 v x−1

0 v x−1
0 v x3

0

where v = x2
1x
−1
0 x−1

1 x0x
−1
1 . In particular, each of the first two components can be

constructed either when the pointer is moving right, or later when the pointer is

moving back left.

Example 4.4.3. Let f be the element of F with forest diagram:
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There are precisely two minimum-length words for f :

x−2
0 u−1 x−2

0 x1 x0 v x
2
0 u x0

x−2
0 u−1 x−1

0 v x−1
0 x1 x

3
0 u x0

where u = x2
1x
−1
0 x1x0 and v = x2

1x
−1
0 x−1

1 x0x
−1
1 . Note that the first component must

always be constructed on the journey right, and the second component must always

be constructed on the journey left. The only choice lies with the construction of

the third component: should it be constructed when moving right, or should it be

constructed while moving back left?

In general, certain components act like “top trees” while others act like “bottom

trees”, while still others are “balanced”. For example, the forest diagram:

 

�
 

�
 

�
 

must be constructed from left to right (so all the components act like “top trees”).

The reason is that the three marked spaces each have weight 0, so that each of the

three highlighted carets must be constructed before the pointer can move farther

to the right. Essentially, the highlighted carets are acting like bridges over these

spaces.

The idea of the “bridge” explains two phenomena we have already observed.

First, consider the following contrapositive of proposition 4.3.6:

Proposition 4.4.4. Let f ∈ F , and suppose that the top pointer of f points at a

nontrivial tree. Then `
(
x−1

1 f
)
< `(f) unless the resulting uncovered space has type[

R
R

]
.
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This proposition states conditions under which the destruction of a top caret

decreases the length of an element. Essentially, the content of the proposition is

that it makes sense to delete a top caret unless that caret is functioning as a bridge.

(Note that the deletion of any of the bridges in the example above would result in

an

[
R
R

]
space.) It makes no sense to delete a bridge, since the bridge is helping

you access material further to the right.

Next, recall the statement of corollary 4.3.8: every f ∈ F has a minimum-

length word with `1(f) instances of x1 or x−1
1 and `0(f) instances of x0 or x−1

0 .

After the corollary, we mentioned that not every minimum-length word for f is

necessarily of this form. The reason is that it sometimes makes sense to build

bridges during the creation of an element:

Example 4.4.5. Let f be the element of F with forest diagram:

 

Then one minimum-length word for f is:

x2
0x
−1
1 x−5

0 x1x
4
0

This word corresponds to the instructions “move right, create the top caret, move

left, create the bottom caret, and then move back to the origin”. However, here is

another minimum-length word for f :

x2
0x
−1
1 (x−1

0 x−3
1 x−1

0 )x1(x0x
3
1)

In this word, the “move right” is accomplished by building three temporary bridges:
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These bridges are torn down during the “move left”.

Finally, here is a third minimum-length word for f :

x−3
1 x2

0x
−1
1 x−2

0 x1(x0x
3
1)

In this word, bridges are again built during the “move right”, but they aren’t torn

down until the very end of the construction.

We now turn our attention to a few examples with some more complicated

behavior.

Example 4.4.6. Let f be the element of F with forest diagram:

 

There are four different minimum-length words for f :

x−3
0 x1x

−1
0 x1x

2
0x1x

−1
0 x1x

2
0x1x

−1
0 x1x

2
0

x−1
0 x1x

−3
0 x1x

−1
0 x1x

2
0x1x

−1
0 x1x

2
0x1x

2
0

x−2
0 x1x

−2
0 x1x

−1
0 x1x

2
0x1x

2
0x1x

−1
0 x1x

2
0

x−1
0 x1x

−2
0 x1x

−2
0 x1x

−1
0 x1x

2
0x1x

2
0x1x

2
0

Note that each of the first two components may be either partially or fully con-

structed during the move to the right. This occurs because the trees in this example

do not end with bridges. (Compare with example 4.4.1.)

Example 4.4.7. Let f be the element of F with forest diagram:
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There is exactly one minimum-length word for f :

x−1
0 x−1

1 x−3
0 x1x0x1x0x

−1
1 x0x

−1
1 x0

Note that the highlighted caret must be constructed last, since the space it spans

should not be crossed. However, we must begin by partially constructing the first

component, because of the bridge on its right end.



Chapter 5

Applications
This chapter contains various applications of forest diagrams and the length for-

mula. Some of the material in this chapter represents joint work with my thesis

advisor, Kenneth Brown. Sections 1 and 2 were originally published in [BeBr].

5.1 Dead Ends and Deep Pockets

In [ClTa1], S. Cleary and J. Taback prove that F has “dead ends” but no “deep

pockets”. In this section, we show how forest diagrams can be used to understand

these results.

Definition 5.1.1. A dead end is an element f ∈ F such that `(xf) < `(f) for all

x ∈
{
x0, x1, x

−1
0 , x−1

1

}
.

Example 5.1.2. Consider the element f ∈ F with forest diagram:

 

Left-multiplying by x−1
0 decreases the length since the left space of f is of type[

L
L

]
. Left-multiplying by x0 or x1 decreases the length since the right space of f is

of type

[
R
R

]
. Finally, left-multiplying by x−1

1 decreases the length since it deletes

a top caret and the right space of x−1
1 f is not of type

[
R
R

]
.

This example is typical:

81
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Proposition 5.1.3. Let f ∈ F . Then f is a dead end if and only if:

1. The current tree of f is nontrivial,

2. The left space of f has label

[
L
L

]
,

3. The right space of f has label

[
R
R

]
, and

4. The right space of x−1
1 f does not have label

[
R
R

]
.

Proof. The “if” direction is trivial. To prove the “only if” direction, assume that

f is a dead end. Then:

Condition (1) follows from the fact that `
(
x−1

1 f
)
< `(f) (see proposition 4.3.5).

Condition (2) now follows from the fact that `
(
x−1

0 f
)
< `(f) (see corollary

4.3.4).

Condition (3) now follows from the fact that `(x1f) < `(f) (see proposition

4.3.6).

Condition (4) now follows from the fact that `
(
x−1

1 f
)
< `(x1f) (see proposition

4.3.6).

Note that there are several ways to meet condition (4): the right space of x−1
1 f

could be of type

[
R
L

]
(as in example 5.1.2), or it could be of type

[
R
I

]
:
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or it could just have an N on top:

 

Notice also that the proof of proposition 5.1.3 did not use the hypothesis that

` (x0f) < `(f). In particular, if the length of f increases when you left-multiply

by x1, x
−1
1 , and x−1

0 , then f must be a dead end.

Definition 5.1.4. Let k ∈ N. A k-pocket of F is an element f ∈ F such that:

`(s1 · · · skf) ≤ `(f)

for all s1, . . . , sk ∈
{
x0, x1, x

−1
0 , x−1

1 , 1
}

.

Note that a 2-pocket is just a dead end. S. Cleary and J. Taback demonstrated

that F has no k-pockets for k ≥ 3. We give an alternate proof:

Proposition 5.1.5. F has no k-pockets for k ≥ 3.

Proof. Let f ∈ F be a dead-end element. Then the right space of f has label[
R
R

]
, so the tree to the right of the top pointer is trivial. Therefore, repeatedly

left-multiplying x0f by x−1
1 will create negative carets:

 

In particular, x−1
1 x−1

1 x0f has length `(f) + 1.
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5.2 Growth

We can use forest diagrams to calculate the growth function of the positive monoid

with respect to the {x0, x1} generating set. Burillo [Bur] recently arrived at the

same result using tree diagrams and Fordham’s length formula:

Theorem 5.2.1. Let pn denote the number of positive elements of length n, and

let:

p(x) =
∞∑
n=0

pnx
n

Then:

p(x) =
1− x2

1− 2x− x2 + x3

In particular, pn satisfies the recurrence relation:

pn = 2pn−1 + pn−2 − pn−3

for all n ≥ 3.

Proof. Let Pn be the set of all positive elements of length n. Define four subsets

of Pn as follows:

1. An = {f ∈ Pn : the current tree of f is trivial and is not the leftmost tree}

2. Bn = {f ∈ Pn : the current tree of f is nontrivial, but its right subtree is

trivial}

3. Cn = {f ∈ Pn : the current tree of f is trivial and is the leftmost tree.}

4. Dn = {f ∈ Pn : the current tree of f is nontrivial, and so is its right subtree.}
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Given an element of An, we can remove the current tree and move the pointer

left, like this:

 

This defines a bijection An → Pn−1, so that:

|An| = |Pn−1|

Given an element of Bn, we can remove the top caret together with the resulting

trivial tree, like this:

 

This defines a bijection Bn → Pn−1, so that:

|Bn| = |Pn−1|

Given an element of Cn, we can move both the top and bottom arrows one

space to the right, like this:

 

When n ≥ 2, this defines an injection ϕ : Cn → Pn−2. The image of ϕ is all

elements of Pn−2 whose current tree is the first tree.
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Finally, given an element of Dn, we can remove the top caret and move the

pointer to the right subtree, like this:

 

This defines an injection ψ : Dn → Pn−2. The image of ψ is all elements of Pn−2

whose current tree is nontrivial, and is not the first tree. In particular:

(imϕ) ∪ (imψ) = Pn−2 − An−2

so that:

|Cn|+ |Dn| = |Pn−2| − |An−2| = |Pn−2| − |Pn−3|

This proves that pn satisfies the given recurrence relation for n ≥ 3. It is not much

more work to verify the given expression for p(x).

5.3 The Isoperimetric Constant

Let G be a group with finite generating set Σ, and let Γ denote the Cayley graph

of G with respect to Σ. If S ⊂ G, define:

δS = {edges in Γ between S and Sc}

The isoperimetric constant of G is defined as follows:

ι (G,Σ) = inf

{
|δS|
|S|

: S ⊂ G and |S| <∞
}
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Theorem 5.3.1 (Følner). The group G is amenable if and only if ι (G,Σ) = 0.

Proof. See [Wag].

Guba [Guba] has shown that ι
(
F, {x0, x1}

)
≤ 1. In this section, we shall prove

a slightly better estimate:

Theorem 5.3.2. ι
(
F, {x0, x1}

)
≤ 1/2.

The proof will occupy the remainder of this section.

Define the height of a binary tree to be the length of the longest descending

path starting at the root and ending at a leaf. Define the width of a binary forest

to be the number of spaces in its support. For each n, k ∈ N, let Sn,k denote all

positive elements whose forest diagram has width at most n and all of whose trees

have height at most k. We shall show that:

lim
k→∞

lim
n→∞

|δSn,k|
|Sn,k|

=
1

2

First of all, observe that each element of Sn,k can be represented by a finite,

n-space binary forest together with a pointer pointing to one of the trees:

 

" #  $  %  8  
á  

We shall refer to such an object as a pointed forest. Note that the trivial trees on

the right of this picture count as part of this pointed forest, even though they are

not in the support of the standard forest diagram.

Claim 5.3.3. Let k ∈ N. If f is a randomly chosen element of Sn,k, then:

|δSn,k|
|Sn,k|

− 2 lim
n→∞

P
(
x−1

1 f /∈ Sn,k
)
→ 0

as n→∞.
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Proof. Observe that:

|δSn,k|
|Sn,k|

= P (x0f /∈ Sn,k) + P
(
x−1

0 f /∈ Sn,k
)

+ P (x1f /∈ Sn,k) + P
(
x−1

1 f /∈ Sn,k
)

Now, Sn,k must have the same number of incoming and outgoing edges of each

type, so both x0 terms and both x1 terms must be equal. Therefore:

|δSn,k|
|Sn,k|

= 2P
(
x−1

0 f /∈ Sn,k
)

+ 2P
(
x−1

1 f /∈ Sn,k
)

Next, note that x−1
0 f /∈ Sn,k if and only if the current tree of f is the leftmost

tree. However, as n → ∞ the minimum number of trees in each element of Sn,k

goes to∞, and hence the probability that the current tree is the leftmost tree goes

to 0. Therefore:

lim
n→∞

P
(
x−1

0 f /∈ Sn,k
)

= 0

Now, if f ∈ Sn,k, then x−1
1 f /∈ Sn,k if and only if the current tree of f is trivial.

Therefore, we must determine the probability that the current tree of a random

pointed forest of width n and height at most k is the trivial tree. (Here and

elsewhere the word random means randomly chosen with respect to the uniform

distribution on pointed forests.)

Theorem 5.3.4. Suppose we choose a random pointed forest f with n leaves and

height at most k. Then the limit:

lim
n→∞

P (the current tree of f is trivial)

exists and is the unique positive root of the polynomial equation:

t1,kp+ t2,kp
2 + t3,kp

3 + · · · = 1

where t`,k is the number of binary trees with ` leaves and height at most k.
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Proof. Let fn denote the number of binary forests with n leaves and height at most

k. Then fn satisfies the following recurrence relation:

fn = t1,kfn−1 + t2,kfn−2 + · · ·

Observe that tn,k 6= 0 for 0 < n ≤ 2k and tn,k = 0 for n > 2k. Using the standard

theory of linear recurrence relations (see [Bru]), we deduce that:

lim
n→∞

fn−1

fn
= p

where p is the unique positive root of the polynomial equation above.

Now let Rn be the number of pointed forests with n leaves and height at most

k, and let R∗n be the number of such pointed forests whose current tree is trivial.

Then:

Rn = f1fn−1 + f2fn−2 + · · ·+ fnf0

and:

R∗n = f0fn−1 + f1fn−2 + · · ·+ fn−1f0

Therefore, the probability that the current tree is trivial is given by:

R∗n
Rn

=
f0fn−1 + f1fn−2 + · · ·+ fn−1f0

f1fn−1 + f2fn−2 + · · ·+ fnf0

It is not hard to show that this approaches p as n → ∞. In particular, if we

ignore the first term of the numerator and the middle term of the denominator,

then each of the remaining terms in the numerator is equal to fm−1/fm times the

corresponding term in the denominator for some m > n/2.

It is interesting to note that the probability that the current tree is a single

caret approaches p2 as n → ∞, since the probability that the current tree is a
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single caret should be equal to the probability that both the current tree and the

right tree are trivial. More generally, if σ is a fixed binary tree with ` leaves, the

probability that the current tree is σ approaches p` as n → ∞. This gives us a

nice intuitive understanding of the polynomial equation in the preceding theorem.

Now, let pk denote the unique positive root of the equation:

tk(pk) = 1

where tk is the polynomial from theorem 5.3.4:

tk(x) = t1,kx+ t2,kx
2 + t3,kx

3 + · · · = 1

All that remains is to show that lim
k→∞

pk =
1

4
.

Note first that a binary tree has height at most k if and only if its left and right

subtrees both have height at most k − 1. Hence:

tk(x) = tk−1(x)2 + x

where the x term corresponds to the trivial tree. This lets us derive the polynomials

tk(x) iteratively, starting at t−1(x) = 0.

Therefore, to solve the equation:

tk(pk) = 1

we must investigate iteration of the map:

t 7→ t2 + c

In particular, c = pk if and only if we arrive at 1 after k + 1 iterations, starting at

t = 0.

A graph of the equation y = x2 + c is shown below for c =
−1 +

√
5

2
:
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�

�

Since this quadratic arrives at 1 after two iterations, p1 =
−1 +

√
5

2
.

By decreasing c (i.e. moving the parabola down), we can increase the number

of iterations that it takes to get to 1, and hence find pk for larger values of k.

Here’s a graph of y = x2 + p4:
�

�

As k → ∞, we must lower the parabola y = x2 + c arbitrarily close to the line

y = x. They become tangent at c =
1

4
, so:

lim
k→∞

pk =
1

4

This concludes the proof of the theorem.

The following corollary explains one reason that it is difficult to improve upon

this result:

Corollary 5.3.5. Let T be any finite set of binary trees which is closed under the

taking of subtrees, and let Sn,T denote all positive elements whose forest diagram
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has width at most n and all of whose trees are from T . Then:

|δSn,T |
|Sn,T |

>
1

2

Proof. Let ai be the number of trees in T with i leaves, and let:

a (x) = a1x+ a2x
2 + a3x

3 + · · ·

By the argument above,

|δSn,T |
|Sn,T |

= 2p

where p is the unique positive root of the polynomial equation a (p) = 1.

Let k be the maximum height of the trees in T . Then ai ≤ ti,k for each i, so

a (x) ≤ tk (x) for all x ≥ 0. Since a (x) and tk (x) are both increasing, we deduce

that p ≥ pk, and so p > 1/4.



Chapter 6

Convexity
In this chapter, we prove that F is not minimally almost convex with respect to

the generating set {x0, x1}. This improves upon a recent result of S. Cleary and

J. Taback [ClTa2]. The results in this chapter represent joint work with Kai-Uwe

Bux, and were originally published in [BeBu].

6.1 Convexity Conditions

A group G is convex (with respect to a given finite generating set) if the n-ball

Bn(G) is a convex subset of the Cayley graph of G for each n. Very few groups

are convex, but Cannon [Can] has introduced the following weaker property:

Definition 6.1.1. A group G is almost convex (with respect to a given finite

generating set) if there exists an integer L with the following property: given any

g, h ∈ Bn(G) a distance two apart, there exists a path from g to h in Bn(G) of

length at most L.

There exist examples of groups which are almost convex with respect to one

finite generating set, but not with respect to another.

In [Can], Cannon gave an algorithm to construct arbitrarily large sections of

the Cayley graph of an almost convex group, thereby solving the word problem.

He also proved that groups of hyperbolic isometries, groups of Euclidean isome-

tries, and small-cancellation groups are almost convex. Coxeter groups are also

almost convex [DaSh], as are all discrete groups based on seven of the eight three-

dimensional geometries [ShSt]. Groups based on the Sol geometry are not almost

convex [CFGT], however, and neither are solvable Baumslag-Solitar groups [MiSh].

93
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The convexity of F was first investigated by S. Cleary and J. Taback [ClTa2].

Using tree diagrams and Fordham’s length formula, they proved the following:

Theorem 6.1.2. F is not almost convex with respect to the {x0, x1} generating

set.

Proof. Let f and g be the following two elements, differing only in the position of

the top pointer:

 

8 

â  

0  1  

Clearly f and g are a distance 2 apart, and they both have length 2n+ 2:

 

8 

â  !  
R 

I 
#  
R 

R 
#  
R 

R 
#  
R 

R 
!  
I 

R 
â  "  

L 

I 
"  
L 

R 

0  1  

and 

However, x0f has length 2n+ 3:

 

â "  
L 

I 
#  
L 

R 

Therefore, the geodesic:

f x0f g

leaves the ball of radius 2n+ 2.
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In particular, if one wishes to go from g to f inside the ball of radius 2n + 2,

one must first move all the way to the right and delete the top caret. Therefore,

the shortest path from f to g in B2n+2(F ) has length at least n.

The notion of almost convexity can be generalized as follows:

Definition 6.1.3. Let G be a finitely-generated group, and let c : N→ N be any

function. We say that G satisfies a weak almost-convexity condition with respect

to c if, given any g, h ∈ Bn(G) a distance two apart, there is a path from g to h in

Bn(G) of length at most c(n).

Since there is always a path from g to h of length 2n, the weakest nontrivial

convexity condition occurs when c(n) = 2n− 1. If G satisfies this condition (with

respect to some finite generating set), we say that G is minimally almost convex.

I. Kapovich [Kap] has shown that any minimally almost convex group is finitely

presented, and T. Riley [Riley] derives upper bounds for the area function, the

isodiametric function, and the filling length for minimally almost convex groups.

In the next two sections, we will show that F is not minimally almost convex.

In particular, we will prove the following:

Theorem 6.1.4. For any even n ≥ 4, there exist elements l, r ∈ F of length n

such that:

1. l and r are distance two apart in the Cayley graph of F , and

2. The shortest path from l to r inside Bn(F ) has length 2n.
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6.2 F is not Minimally Almost Convex

Let l and r be the following two elements, differing only in the position of the top

pointer:

 

ä 

â  

8  

6  <  

Then l and r are clearly a distance two apart in the Cayley graph of F .

In this section and the next, we shall prove the following:

Theorem 6.2.1.

1. Both l and r have length 2n+ 2.

2. Any path from l to r inside the (2n+ 2)-ball has length at least 4n+ 4.

Condition (1) is trivial to verify:

Lemma 6.2.2. The elements l and r both have length 2n+ 2.

Proof. Note that the forest diagram for l has exactly n + 1 carets. Furthermore,

its forest diagram has the following weights:

 

�
 

L 

I 
�  

�
 

L 

I 

�
 

R 

I 

�
 

R 

R 

�
 

I 

R 

Therefore, l has length (n+ 1) + 1 + · · ·+ 1︸ ︷︷ ︸
n−1

+ 0 + 2 + 0 = 2n+ 2.

Similarly, r has exactly n+ 1 carets. Its weights are:
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�
 

L 

I 
�  

�
 

L 

I 

�
 

L 

I 

�
 

L 

R 

�
 

I 

R 

Therefore, r has length (n+ 1) + 1 + · · ·+ 1︸ ︷︷ ︸
n−1

+ 1 + 1 + 0 = 2n+ 2.

Remark 6.2.3. Note that the element x0l has weights:

 

�
 

L 

I 
�  

�
 

L 

I 

�
 

L 

I 

�
 

R 

R 

�
 

I 

R 

and hence has length 2n+ 3. Therefore, the geodesic path

l x0l r

leaves the ball of radius 2n+ 2.

The proof of condition (2) is rather technical, so we postpone it until the next

section. For the remainder of this section, we shall attempt to convey the intuitive

ideas behind the proof, particularly in the choice of l and r.

The main idea is as follows. The forest diagram for l and r has a “critical line”,

pictured below:

 

�
 

�  

�
 

�  
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This line has the following crucial property: if one wishes to remain in the (2n+2)-

ball, one cannot cross the critical line as long as both of the highlighted carets are

in place. Therefore, any path in the (2n+ 2)-ball from l to r must go through the

following four stages:

1. Move to the left, and delete the leftmost caret.

2. Move to the right (crossing the critical line), and delete the rightmost caret.

3. Move back left (crossing again), and re-create the leftmost caret.

4. Move back right (crossing the critical line for a third time), and re-create the

rightmost caret.

Example 6.2.4. The word:

(
x1x

n+1
0

) (
x−1

1 x−n0

) (
x−1

1 xn0
) (
x1x

1−n
0

)
describes a path in B2n+2(F ) from l to r of length 4n + 4. Note that the bulk of

the bottom tree remains intact throughout this path. In particular, this path does

not pass through the identity vertex.

Example 6.2.5. The word

(
x1x

n+1
0

) (
x−n1 x−1

0

) (
x−1

1 x0x
n−1
1

) (
x1x

1−n
0

)
represents a minimum-length path from l to r that passes through the identity

vertex. This time, we travel to the right by destroying the bottom tree, and travel

to the left be re-creating it.

Example 6.2.6. For n = 8, here is another minimum-length path from l to r:(
x1x

7
0x
−4
1 x2

0

) (
x−1

1 x−4
0

) (
x−1

1 x4
0

) (
x1x

−2
0 x4

1x
−5
0

)
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In this path, we build carets in the top forest while moving to the left, and destroy

them later during the final move to the right. (Note that we have underlined the

segments of the word under discussion.) The resulting bridge saves us travel time

during the middle two stages, but its construction and demolition cost the same

amount of time during the first and last stages.

Finally, we would like to give some indication of how the elements l and r were

chosen. To do so, we give an example of two elements that would not work, despite

having a similar structure:

Example 6.2.7. Consider the elements f and g used during the proof of theorem

6.1.2:

 

�  

�  

�
 �  

We have previously observed that f and g are a distance 2 apart in the Cayley

graph of F , and that they both have length 2n+ 2. Furthermore, the path

f x0f g

leaves the (2n+2)-ball. This suggests a “critical line” in the forest diagram (already

shown), which might lead one to believe that the word:

(
x1−n

0 x1

) (
xn+1

0 x−1
1

) (
x−n0 x−1

1

)
(xn0x1)

of length 4n+ 4 is a minimum-length path from l′ to r′ in B2n+2(F ).

However, this turns out not to be the case. For example, when n = 6,(
x−4

1 x−1
0 x1

) (
x3

0x
−1
1

) (
x−2

0 x−1
1

) (
x0x

4
1x0x1

)
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is a path from l′ to r′ of length 24 in B18. This path saves time by building a

bridge during the initial move to the right:

 

This does not cost any extra time during the initial move to the right, but it saves

an enormous amount time during the subsequent two stages. The bridge is torn

down during the final move to the left, which again does not cost any extra time.

The key difference between the elements f, g and the element l, r is that the

bulk of the support of l and r is to the left of the critical line. This means that

one must travel left-right-left-right to get from l to r, so that one cannot save time

by building bridges.

6.3 Proof of Condition 2

Fix a path p from l to r that does not leave B2n+2(F ). We wish to show that its

length L(p) is at least 4n+ 4.

We claim that it suffices to show:

Lemma 6.3.1. On the path p, there are two vertices, hl and hr, such that:

d(hl, hr) ≥ 2n+ 3

Why is this sufficient? Well clearly,

L(p) ≥ d(l, hl) + d(hl, hr) + d(hr, r)
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However, by the triangle inequality:

d(hl, hr) ≤ d(hl, l) + d(l, r) + d(r, hr)

Since d(l, r) = 2, we conclude that:

L(p) ≥ 2 d(hl, hr)− 2 ≥ 4n+ 4

It remains to prove lemma 6.3.1. We begin by formalizing the notion of “cross-

ing the critical line” from the previous section:

Definition 6.3.2. Suppose f ∈ F .

1. Define the right foot of f to be the rightmost leaf of the current tree of f .

2. Define the critical leaf of f to be the rightmost leaf of the bottom tree of f

currently indicated by the bottom pointer.

Note that the right foot of l is to the left of the critical leaf and the right foot

of r is to the right of the critical leaf. Let hl be the first vertex of p whose right

foot coincides with the critical leaf, and let hr be the last vertex of p with this

property.

Remark 6.3.3. Note that left-multiplication by a generator can change the po-

sition of the right foot by more than one unit. However, since the tree directly

above the critical leaf is trivial, the right foot is guaranteed to not jump over the

critical leaf.

Lemma 6.3.4. The path p ends with

x−1
0 x−1

1 r −→ x−1
1 r −→ r

In particular, hr = x−1
0 x−1

1 r.
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Proof. It is easy to check that every path of length three emanating from r either

passes through x−1
0 x−1

1 r or leaves the (2n+ 2)-ball.

Recall that an element of F is left-sided if both pointers point to the rightmost

trees in the support. Recall also that the width w(f) of an element of F is the

number of spaces in the support of its forest diagram.

Lemma 6.3.5. If f ∈ F is left-sided, then:

`(f) ≥ 2w(f)

Proof. We can associate to each caret in a forest diagram the interior space that

it covers. In this way, the interior spaces of f each contribute 1 to the length.

However, since f is left-sided, every exterior space of f is of type L. The claim

now follows, since the weight of any space is greater than or equal to the number

of L’s in its label pair.

Remark 6.3.6. Note that this lemma fails for right-sided elements: An

[
R
I

]
-

space pair has weight 0, and therefore only contributes 1 to the length. Hence, the

best available estimate for right-sided elements is `(f) ≥ w(f).

This difference is related to the fact that one can “move right” by dropping

carets, but one cannot simultaneously build a structure and move left. (Compare

with example 6.2.7.)

Proof of Lemma 6.3.1. Note that h−1
r has a trivial bottom forest:

 

�  

�
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Therefore, for any f ∈ F , a forest diagram for h−1
r f can be obtained by stacking

h−1
r on top of f . Moreover, this diagram will be reduced unless the bottom forest

of f has an exposed caret in exactly the right position (namely, n spaces to the

left of the critical leaf) to cancel with the unique exposed caret of h−1
r .

Consider the element x2. Observe that:

1. Every left-sided element commutes with x2. In particular, h−1
r and x2 com-

mute.

2. `(x2f) = `(f) + 3 for any left-sided f ∈ F .

Now, hl is the first vertex of p whose right foot hits the critical leaf. Therefore,

when we get to hl in p, we have not yet modified any material to the right of the

critical leaf. In particular, there is some left-sided h′l ∈ F satisfying:

hl = x2h
′
l

Observe that `(h′l) = `(hl)− 3 ≤ 2n− 1, and hence h′l has width strictly less than

n. Then the stacked diagram for h−1
r h′l must already be reduced, since no caret

of h′l is far enough to the left to oppose the grounded caret of h−1
r . From this, we

conclude that h−1
r h′l has width at least n. Since h−1

r h′l is strongly negative, lemma

6.3.4 implies that:

`(h−1
r h′l) ≥ 2n

and hence:

d(hl, hr) = `
(
h−1
r hl

)
= `

(
x2h

−1
r h′l

)
= `

(
h−1
r h′l

)
+ 3 ≥ 2n+ 3
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6.4 Consequences

Theorem 6.1.4 has some interesting consequences for the Cayley graph of F . The

first holds in any group that is not minimally almost convex, but we state and

prove it for F :

Corollary 6.4.1. The Cayley graph for F with respect to {x0, x1} contains iso-

metrically embedded loops of arbitrary large circumference.

Proof. Fix an even n ≥ 4, and let l and r be the two elements from Theorem 6.1.4.

Choose geodesics pl and pr connecting l and r to the identity vertex, and extend

these arcs to a closed loop using a path of length two

from l to r. We claim that this loop γ (of length 2n+2)

is isometrically embedded.

Let x ∈ pl and y ∈ pr, and suppose there were a

 

"

6  

<  

B  

C  

# 

�

 ;  

path q from x to y shorter than both arcs connecting x and y inside γ. Then the

loop γ′ (indicated in the picture) is shorter than γ, and hence lies entirely inside

the n-ball. In particular, the arc q lies entirely inside Bn(F ), a contradiction since

this provides a shortcut from l to r.

Since the two arcs in γ from the identity to its antipode are also geodesics, the

loop γ is isometrically embedded.

Next, recall that a combing of a group G is, for each g ∈ G, a choice of a path

in the Cayley graph from the identity to g (see section 1.5). A geodesic combing

is a combing whose paths are geodesic segments.

The following result holds in any group that is not almost convex, but again

we state and prove it just for F :
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Corollary 6.4.2. No geodesic combing of F (with respect to {x0, x1}) has the

fellow traveller property.

Proof. Suppose we are given a geodesic combing of F . Given any even n ≥ 4,

consider the elements l and r from Theorem 6.1.4. Since the combing paths pl

and pr are geodesics, they can be closed to form an isometrically embedded loop

as in Corollary 6.4.1. In particular, the midpoint of pl has distance n/2 from the

path pr.

S. Cleary and J. Taback [ClTa2] have also obtained Corollary 6.4.2.



Chapter 7

Strand Diagrams
We already possess one algorithm for multiplying elements of F using tree diagrams

(see example 1.2.6). In this chapter, we develop a much simpler, more geometric

understanding of multiplication, in the form of strand diagrams. These diagrams

are closely related to a description of F as the fundamental group of the groupoid

of fractions of a certain category of finite binary forests.

The strand diagrams introduced in this chapter are “dual” to the diagrams

of Guba and Sapir (see [GuSa1]). Matt Brin uses strand diagrams in [Brin] to

represent elements of the braided Thompson group BV .

7.1 Strand Diagrams

The material in this section will be relatively informal, and many of the proofs will

be omitted. In section 7.2 we will develop a rigorous, algebraic viewpoint towards

many of the ideas introduced here.

A strand diagram is any picture of the form:

 

A strand diagram is similar to a braid, except that instead of twists, there are

splits and merges :

106
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split merge 

Because of these splits and merges, a strand diagram may begin and end with

different numbers of strands.

Notes 7.1.1.

1. As with a braid, the strands of a strand diagram are required to have nonzero

slope at all times. Hence, each strand has an “up” direction and a “down”

direction.

2. Isotopic strand diagrams are considered equal; that is, a “strand diagram”

is really an isotopy class of strand diagram pictures. The starting points

and endpoints of the strand diagram are allowed to move horizontally during

these isotopies.

A reduction of a strand diagram is one of the following two types of moves:

 

Two strand diagrams are equivalent if one can be transformed into the other using

reductions and inverse reductions. A strand diagram is reduced if it is not subject

to any reductions.

Proposition 7.1.2. Every strand diagram is equivalent to a unique reduced strand

diagram.

Notation 7.1.3. If i, j ≥ 1, the notation f : i → j will mean “f is a strand

diagram that starts with i strands and ends with j strands.”
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Given strand diagrams f : i → j and g : j → k, the concatenation f · g : i→ k

is obtained by attaching g to the bottom of f . For example, if f and g are the

strand diagrams:

 

and 

then f · g is the strand diagram:

 

Proposition 7.1.4. Concatenation of strand diagrams is well-defined with respect

to equivalence.

If f : i→ j and g : j → k are reduced strand diagrams, define the composition

fg : i→ k to be the reduced strand diagram equivalent to f · g.

Proposition 7.1.5. The collection of reduced strand diagrams forms a groupoid

under composition (with one object for each positive integer).

The identity morphism on n is just the trivial strand diagram with n strands.

Inverses are obtained by reflection across a horizontal line:

 

0 0 

�
�

 

The following theorem explains our interest in strand diagrams:
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Theorem 7.1.6. The fundamental group of the groupoid of strand diagrams is

Thompson’s group F .

That is, given any positive integer n, the group of all reduced strand diagrams

that begin and end with n strands is isomorphic with F .

Informal Proof. Define a forest to be any reduced strand diagram that has no

merges. Observe that each forest is essentially just a finite sequence of binary

trees. We claim that every reduced strand diagram is the concatenation of a forest

and an inverse forest.

Given any picture of a reduced strand diagram, we can draw a curve with the

following properties:

1. Every path from the top to the bottom of the strand diagram crosses the

curve exactly once.

2. Every split lies above the curve, and every merge lies below the curve.

 

Cutting along this curve gives the desired decomposition.

In particular, any reduced strand diagram that begins and end with one strand

is the concatenation of a tree and an inverse tree:
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œ 

This is the tree diagram for the corresponding element of F .

Because of this theorem, we will refer to the groupoid of strand diagrams as

Thompson’s groupoid F .

Observe that we have skirted the issue of whether composition of reduced strand

diagrams in fact corresponds to multiplication in F . We will prove this in an

algebraic context in the following section.

7.2 Thompson’s Groupoid

In this section we define Thompson’s groupoid algebraically and show that its

fundamental group is isomorphic with Thompson’s group F .

First we define the category of forests P :

Objects: There is one object of P for each positive integer.

Morphisms: A morphism i→ j is a finite binary forest with i trees and j total

leaves.

Composition: If f : i→ j and g : j → k, the composition fg : i→ k is obtained

by attaching the roots of the trees of g to the leaves of f in an order-preserving

way.
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Note that we are composing elements of P using the same “backwards” con-

vention that we have been using throughout.

For 0 ≤ n < w, let xn : w → w + 1 be the forest:

 
�  �  

�
 �  

�  �
 �  �  

Then any forest is a product of the xn’s since any forest can be obtained from a

trivial forest by attaching carets. If we attach carets from left to right, we get the

normal form:

Proposition 7.2.1. Every nontrivial morphism of P can be expressed uniquely as:

xa0
0 x

a1
1 · · ·xan

n

where a0, . . . , an ∈ N and an 6= 0.

Corollary 7.2.2. The category P has the following presentation:

Generators: One generator xn : w → w + 1 for each 0 ≤ n < w.

Relations: One relation:

w
xn−→ w + 1

xk−→ w + 2 = w
xk−→ w + 1

xn+1−→ w + 2

for each 0 ≤ k < n < w.

We wish to construct F as the groupoid of fractions for the category P . We

begin with a brief general discussion concerning groupoids of fractions. See [ClPr]

for proofs of the statements below in the context of semigroups and groups of

fractions.

Definition 7.2.3. Let C be any category. A groupoid of right fractions for C is a

groupoid G containing C, and having the following properties:
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1. Every object of G is an object of C.

2. Every morphism of G can be expressed as pq−1, where p and q are morphisms

of C.

An expression of the form pq−1, where p and q are morphisms in C, is called a

right fraction.

Proposition 7.2.4. Let C be a category with groupoid of right fractions G. If

p1q
−1
1 and p2q

−1
2 are right fractions, then p1q

−1
1 = p2q

−1
2 if and only if there exist

morphisms r1, r2 in C making the following diagram commute:

•
p1

��~~
~~

~~
~ p2

��@
@@

@@
@@

• r1 // • •r2oo

•
q1

__@@@@@@@ q2

??~~~~~~~

Based on this proposition, it is clear that any two groupoids of fractions for a

given category are isomorphic. The following theorem gives necessary and sufficient

conditions for a category to have a groupoid of fractions:

Theorem 7.2.5. Let C be any category. Then C has a groupoid of fractions if and

only if C has the following properties:

1. (C is cancellative) For any morphisms such that the stated compositions exist:

pr = qr ⇒ p = q and lp = lq ⇒ p = q

2. (C has common right multiples) Given any morphisms p, q with the same

domain, there exist morphisms r, s such that pr = qs.
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Theorem 7.2.6. The category P has a groupoid of right fractions F .

Proof. P is clearly cancellative. Next, suppose that f and g are any two morphisms

with the same domain w (so f and g are forests with w trees). Let n be the

maximum height of all of the trees in f and g. Then f and g have as a common

right multiple the forest with w complete binary trees of height n.

Remark 7.2.7. A strand diagram picture is just a word in the xn’s and x−1
n ’s.

In particular, suppose we have a strand diagram picture with the property that

all merges and splits occur at different heights. Then each split corresponds to an

instance of some xn, and each merge corresponds to an instance of some x−1
n .

If we perform an isotopy on a strand diagram that causes the heights of two

intersections to switch, it corresponds to an application of one of the following

types of relations:

xnxk = xkxn+1

x−1
n xk = xkx

−1
n+1

x−1
k xn = xn+1x

−1
k

or x−1
k x−1

n = x−1
n+1x

−1
k

The two reductions:

 

correspond to cancelling an x−1
n xn or xnx

−1
n pair, respectively.

This explains why the groupoid F constructed above is the same as the groupoid

of strand diagrams defined in section 7.1.
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Theorem 7.2.8. The fundamental group of F is isomorphic with Thompson’s

group F .

Proof. Let PL be the groupoid of closed intervals and piecewise-linear homeomor-

phisms. Define a homomorphism (functor) ρ : P → PL as follows:

1. ρ(w) = [0, w] for any positive integer w.

2. If xn : w → w+1, then ρ(xn) : [0, w]→ [0, w+1] is the homeomorphism with

slope 1 on [0, n] ∪ [n+ 1, w] and slope 2 on [n, n+ 1].

It is easy to verify that ρ respects the relations in P , and is therefore a well-defined

homomorphism. Observe also that ρ is one-to-one on morphisms.

Note that, if f : 1→ w, then ρ(f) is a homeomorphism that sends the intervals

of some dyadic subdivision of [0, 1] linearly onto the intervals [0, 1], . . . , [w− 1, w].

Since PL is a groupoid, the monomorphism ρ : P → PL extends to a monomor-

phism ρ : F → PL. If f : 1→ 1 is any morphism of F , then f = pq−1 for some mor-

phisms p, q : 1 → w of P , and therefore ρ(f) is the homeomorphism [0, 1] → [0, 1]

that sends the intervals of the dyadic subdivision for p linearly to the intervals of

the dyadic subdivision for q. We conclude that the image under ρ of π1(F, 1) is

precisely the group F .

Using an argument similar to the proof of theorem 1.1.2, one can show that

the image of (F ) under ρ is precisely the set of piecewise-linear homeomorphisms

f : [0, i]→ [0, j] such that:

1. All slopes of f are powers of 2, and

2. All breakpoints of f have dyadic rational coordinates

Theorem 7.2.8 yields an alternate derivation of the standard presentation for F :
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Theorem 7.2.9. Thompson’s group F has presentation:

〈x0, x1, x2, . . . | xnxk = xkxn+1 for k < n〉

Proof. Since F is the groupoid of fractions for P , the presentation for F is the same

as the presentation for C. Therefore, F is generated by elements x
(w)
n : w → w + 1

with relations x
(w)
n x

(w+1)
k = x

(w)
k x

(w+1)
n+1 (0 ≤ k < n < w):

 
�
 �  �  

� �  
� �  
� �  

� �  � �  � �  �  
�
 

To find a presentation for π1 (F , 1), we must choose a spanning subtree of the

graph of generators to contract. We choose the subtree
{
x

(1)
0 , x

(2)
1 , x

(3)
2 , . . .

}
:

 
�
 �  �  

� �  
� �  
� �  

� �  � �  � �  �  
�
 

Therefore, π1(F , 1) is generated by elements x
(w)
n (n < w − 1). The relations

x
(w)
n x

(w+1)
k = x

(w)
k x

(w+1)
n+1 become:

x
(w+1)
k = x

(w)
k

when n = w − 1 and:

x(w)
n x

(w+1)
k = x

(w)
k x

(w+1)
n+1

for n < w − 1. These reduce immediately to the standard relations for F , where

xn is the element

x(n+2)
n = x(n+3)

n = x(n+4)
n = · · ·
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7.3 Strand Diagrams and Braids

The similarity between strand diagrams and braids is more than superficial: it is

possible to develop some of the theory of F in analogy with the development of

the theory of braid groups. In this section, we describe a classifying space for F

that is analogous to the standard classifying spaces for the braid groups.

A braid is essentially just the path of motion of n points in the plane, i.e. a

loop in the configuration space on n points in R2. The following is well-known:

Theorem 7.3.1. Let Bn denote the braid group on n strands, and let Xn be the

configuration space of n points in R2. Then Xn is a classifying space for Rn.

Proof. See [FaNe].

A strand diagram represents the motion of finitely many points on the real

line, with the points allowed to split and merge in pairs. We wish to construct the

corresponding “configuration space”.

Let Xw be the collection of all w-tuples (t0, t1, . . . , tw−1) satisfying:

1. t0 ≤ t1 ≤ · · · ≤ tw−1, and

2. ti+2 − ti ≥ 1 for all i.

(The purpose of the second condition is to prevent three points from merging simul-

taneously.) Let X be the disjoint union of the Xw’s, subject to the identifications:

(t0, t1, . . . , tw−1) ≡ (t0, t1, . . . , tn, tn, . . . , tw−1)

Theorem 7.3.2. X is a classifying space for F .

We will sketch of proof of this theorem for the remainder of this section. Many

tedious topological details will be omitted.



117

For i, j > 0, let [i→ j] denote all morphisms in Thompson’s groupoid F from

i to j. For each w, let X̃w = Xw × [1→ w], where the set [1→ w] has the discrete

topology. Let X̃ be the disjoint union of the X̃w’s, subject to the identifications:

((t0, t1, . . . , tw−1), f) ≡ ((t0, t1, . . . , tn, tn, . . . , tw−1), fxn)

There is an obvious left-action of F on X̃, with quotient X. It is not hard to see

that this is a covering space action, so that X̃ is a covering space of X. We claim

that X is contractible.

The plan is to exhibit an explicit contraction of the space X̃. Observe that

an element x of X̃ is essentially just a strand diagram that starts with 1 strand

and ends with w strands, together with specified positions for the endpoints. The

idea is to choose our “favorite picture” D of this strand diagram, and then “run

the diagram backwards”. That is, assuming D has height 1, we will move x along

the path which at time t is represented by the initial segment of D with height

1 − t. The trick is to find a way of choosing our “favorite picture” that varies

continuously with position in X̃.

However, we would first like to simplify the situation. Let Y be the subspace

of X consisting of all w-tuples with first coordinate 0. To specify an element of Y ,

we need only specify the distances between the w strands:

(0, t1, . . . , tw−1) = [t1, t2 − t1, . . . , tw−1 − tw−2]

Notice that a tuple [d1, . . . , dw−1] specifies an element of Y if and only if each

dn ≥ 0 and dn + dn+1 ≥ 1 for all n. Let Ỹ be the subspace of X̃ that maps

onto Y . Then X̃ clearly deformation retracts onto Ỹ . We will exhibit an explicit

contraction of the space Ỹ .

Now some terminology:
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Definition 7.3.3. Suppose that f : 1→ w.

1. We say that the n’th strand of f has just merged if right-multiplication by

xn would cancel a merge in the strand diagram for f .

2. We say that strands n and n+ 1 have just split if right-multiplication by x−1
n

would cancel a split in the strand diagram for f .

For example, if f is the element:

 

then strand 1 has just merged, and strands 2 and 3 have just split.

We are now ready to describe the contraction of Ỹ . Suppose that y ∈ Ỹ , with

distances [d1, . . . , dw−1] and strand diagram f : 1→ w. Then y moves as follows:

1. If strand n has just merged in f , and dn−1, dn ≥ 1, then strand n immedi-

ately splits. That is, a 0 is inserted between dn−1 and dn, and this 0 begins

increasing at unit speed.

2. If strands n and n+ 1 have just split, then the distance dn decreases at unit

speed until it reaches 0, at which point dn is removed.

3. Otherwise, the distance dn moves toward 1 at unit speed.

Note that the point y might take arbitrarily long to reach the basepoint of Ỹ .

Therefore, the described contraction takes place during the time interval [0,∞].
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Example 7.3.4. Let y be the point ([1, 0.8, 1, 0.6], x3
0x2x4x

−1
3 ):

 

" ! Þ )  " ! Þ '  

Then y moves towards the basepoint of Ỹ as follows:

Time Position in Y Position in F Movement

0 [1, .8, 1, .6] x3
0x2x4x

−1
3 d1 → 0, d2 → 1, d4 → 1

0.2 [.8, 1, 1, .8] x3
0x2x4x

−1
3 d1 → 0, d4 → 1

0.4 [.6, 1, 1, 1] x3
0x2x4x

−1
3 Strand 3 splits.

0.4 [.6, 1, 1, 0, 1] x3
0x2x4 d1 → 0, d3 → 0, d4 → 1, d5 → 0

1 [0, 1, .4, .6, .4] x3
0x2x4 Strands 0 and 1 merge.

1 [1, .4, .6, .4] x2
0x1x3 d2 → 0, d3 → 1, d4 → 0

1.4 [1, 0, 1, 0] x2
0x1x3 Strands 1, 2 and 3, 4 merge.

1.4 [1, 1] x2
0 d1 → 0

2.4 [0, 1] x2
0 Strands 0 and 1 merge.

2.4 [1] x0 d1 → 0

3.4 [0] x0 Strands 0 and 1 merge

3.4 [] identity Basepoint reached.

The path followed by this element can be summarized by the following diagram:
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" ! Þ )  " ! Þ '  

! Þ #  
!  

! Þ %  

"Þ %  

# Þ %  

$ Þ %  

7.4 Other Thompson Groups

There are several groups similar to F that also have strand diagrams. In this

section, we will briefly introduce each of these groups and discuss the corresponding

strand diagrams, as well as algebraic constructions of the corresponding groupoids.

As an application, we shall compute an infinite presentation for each of these

groups. Because they are based on strand diagrams, these presentations all admit

a “normal form” similar to the normal form for elements of F .

The Groups T and T̃

We shall begin by discussing Thompson’s Group T, which is a “circular” version

of Thompson’s group F .

Let π : [0, 1] → S1 be the quotient map. A dyadic subdivision of S1 is any

image under π of a dyadic subdivision of [0, 1]. A dyadic rearrangement of S1 is

any homeomorphism S1 → S1 that maps the intervals of one dyadic subdivision

linearly onto the intervals of another, preserving the cyclic order of the intervals.

For example, if D and R are the subdivisions:
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then there exists a dyadic rearrangement of S1 that sends the intervals (a, b, c, d)

linearly onto the intervals (B,C,D,A).

The set T of all dyadic rearrangements of S1 forms a group under composition.

It is isomorphic to the group of cyclic-order preserving automorphisms of a free

Cantor algebra (see section 1.6 for a definition of Cantor algebras, and see [Bro] for

details). The group T was introduced by Thompson, who proved that T is finitely

presented and simple. (See [CFP] for a published version of these results, and a

thorough introduction to T .) Like F , the group T has type F∞ (see [Bro]).

We can represent any element of T by a pair of binary trees, together with a

cyclic permutation of the leaves. For example, the element above can be repre-

sented by the diagram:

 

This is called a tree diagram for an element of T . (It can be helpful to think of a

tree diagram as being embedded on the cylinder, with the dashed lines identified.)

The tree diagram for the above element is not reduced:
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A cylindrical strand diagram is any strand diagram that is embedded on the

cylinder:

 

Two cylindrical strand diagrams are equivalent if one can be obtained from the

other by a sequence of:

1. reductions, inverse reductions, and

2. Dehn twists of the cylinder.

(Allowing Dehn twists is necessary because a rotation of the circle by 2π is equal

to the identity in T . Equivalently, we could allow the begin-points and endpoints

to move horizontally around the circle during isotopies.) The group of all equiva-

lence classes of cylindrical strand diagrams that start and end with one strand is

isomorphic with Thompson’s group T .

A cylindrical strand diagram is really just a word for an element of a certain

groupoid. In particular, let P [Zw] be the category of “forests plus cyclic permuta-

tions” obtained from P by attaching a copy of Zw at each vertex w:
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" #  $  
B �  

B �  
B �  

B �  
B �  
B �  â  %  

™ �  ™ �  ™ �  ™ �  

Then P [Zw] is generated by the morphisms xn : w → w + 1 (n < w) from P

together with one morphism ωw : w → w for each w ≥ 2 satisfying the relations:

ωww = 1

ωwxn = xn+1ωw+1 (n < w − 1)

ωwxw−1 = x0ω
2
w+1

For example:

 

œ 

=
�
 B �  B �  = �  

and:

 

œ 

=
�
 B �  B �  = �  

�
 

It is not hard to show that P [Zn] is cancellative and has common right multiples,

so by theorem 7.2.5 P [Zn] has a groupoid of right fractions T .

Proposition 7.4.1. The groupoid T has fundamental group T .
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We can use this to calculate a presentation for T :

Theorem 7.4.2. The group T is generated by elements {x0, x1, x2, . . . } and

{ω2, ω3, ω4, . . . }, with relations

ωnn = 1

xnxk = xkxn+1 for n > k

and:

ωnxk = xk+1ωn+1 for k < n− 2

ωnxn−2 = ωn+1

ωn = x0ω
2
n+1

Proof. Since T is the groupoid of fractions of P [Zw], the presentation for T is the

same as the presentation for P [Zw]. Therefore, T is generated by the elements

x
(w)
n : w → w + 1 and ωw : w → w with relations:

x
(w)
n x

(w+1)
k = x

(w)
k x

(w+1)
n+1

ωww = 1

ωwx
(w)
n = x

(w)
n+1ωw+1 (n < w − 1)

ωwx
(w)
w−1 = x

(w)
0 ω2

w+1

To find a presentation for π1(T , 1), we use the morphisms x
(1)
0 , x

(2)
1 , x

(3)
2 , . . . as a

spanning tree. As in theorem 7.2.9, the first family of relations implies that:

x(n+2)
n = x(n+3)

n = x(n+4)
n = · · ·

in π1(T , 1) for each n. If we label this element xn, then the remainder of the first

family of relations reduces to:

xnxk = xkxn+1 for n > k
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The third family of relations yields:

ωwxn = xn+1ωw+1 (n < w − 2)

and:

ωwxw−2 = ωw+1

in the case when n = w − 2. Finally, the fourth family of relations reduces to:

ωw = x0ω
2
w+1

There is another group T̃ that is similar to T but torsion-free, namely the lift

of T in the group of PL-homeomorphisms of R. It is the fundamental group of

the groupoid of right fractions of a category P [Z] which can be constructed by

attaching a copy of Z to each object of P :

 

" #  $  
B �  

B �  
B �  

B �  
B �  
B �  â  %  

™ ™ ™ ™ 

The generators of the Z’s are required to satisfy the same relations in P [Z] that the

generators of the Zw’s satisfied in P [Zw], excepting the relations ωww = 1. Elements

of this groupoid can also be represented by cylindrical strand diagrams, except that

two diagrams that differ by a Dehn twist are not equivalent. Hence the element:

 

=
�  

is not trivial in T̃ .
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Theorem 7.4.3. The group T̃ is generated by the elements {x0, x1, x2, . . . } and

{ω1, ω2, ω3, . . . }, with relations:

xnxk = xkxn+1 for k < n

ωnxk = xk+1ωn+1 for k < n− 2

ωnxn−2 = ωn+1

ωn = x0ω
2
n+1 for n > 1

ω1 = ω2
2

It is not hard to show that:

ω1 = ω2
2 = ω3

3 = · · ·

in T̃ and that this element is central. (It corresponds to a “rotation of the circle

by an angle of 2π”.) Therefore, the epimorphism T̃ � T has kernel Z.

It seems likely that there is a classifying space for T̃ similar to the one for F

constructed in the previous section, i.e. the “configuration space” of finitely many

points on a circle, with the points allowed to split and merge in pairs, but the

details have yet to be worked out.

The Groups V and BV

An element of Thompson’s Group V is obtained by sending the intervals of some

dyadic subdivision of [0, 1] linearly onto the intervals of another, except that the

order of the intervals may be arbitrarily permuted. Note that this produces bi-

jections [0, 1]→ [0, 1] that are not continuous. (By convention, all functions in V

are required to be continuous from the right. Alternatively, one can define V as a

group of homeomorphisms of the Cantor set.)

The set of all elements of V forms a group under composition — it is the same

as the group called V in section 1.6. This group was introduced by Thompson
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along with F and V . He proved that V is simple and finitely presented. (See

[CFP] for a published version of these results, and a thorough introduction to V .)

Like F and T , the group V has type F∞ (see [Bro]).

Recall that an element of V can be represented by a pair of binary forests,

together with any permutation of the leaves:

 

This is called a tree diagram for an element of V .

There is also a groupoid of strand diagrams corresponding to V . An element

of this groupoid is a strand diagram with splits, merges, and crosses:

 

Two V-strand diagrams are equivalent if one can be obtained from the other

by a sequence of reductions, inverse reductions, and homotopies. The group of all

equivalence classes of these strand diagrams that start and end with one strand is

isomorphic with Thompson’s group V .
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It is possible to construct this groupoid algebraically as follows. Let Σw denote

the permutation group on 0, 1, . . . , w − 1, and let sn : Σw → Σw+1 be the function

that “doubles” whichever element maps to n. For example, if σ is the permutation:

 

then s0(σ) is the permutation:

 

Note that sn is not a homomorphism — it is just a function from Σw to Σw+1.

Now let P [Σw] be the category of “forests plus permutations” obtained from P

by attaching a copy of Σw at each vertex w:

 

" #  $  
B �  

B �  
B �  

B �  
B �  
B �  â  %  

D �  D �  D �  D �  

with relations:

σxn = xσ−1(n)sn(σ) (σ ∈ Σw and n < w)

For example:
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œ 

5 B �  B �  = � Ð 5Ñ  

It is not hard to show that P [Σw] is cancellative and has common right multiples.

Its groupoid of right fractions V has fundamental group V .

To derive a presentation for V , recall that the symmetric group Σw is generated

by the adjacent transpositions t1, . . . , tw−1, with relations:

t2n = 1 and tntn+1tn = tn+1tntn+1

It is easy to check that:

si(tn) =



tn+1 i < n− 1

tntn+1 i = n− 1

tn+1tn i = n

tn i > n

Theorem 7.4.4. The group V is generated by the elements {x0, x1, x2, . . . },

{t1, t2, t3, . . . }, and {u1, u2, u3, . . . }, with relations:

xnxk = xkxn+1 for k < n

t2n = u2
n = 1

tntn+1tn = tn+1tntn+1, tnun+1tn = un+1tnun+1
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and:

tnxk = xktn+1, unxk = xkun+1 for k < n− 1

tnxn−1 = xntntn+1, unxn−1 = tnun+1

tnxn = xn−1tn+1tn, un = xn−1un+1tn

tkxn = xntk for k < n

Proof. The groupoid V is generated by elements x
(w)
n : w → w + 1 (n < w) and

t
(w)
n : w → w (1 ≤ n < w) with relations:

x
(w)
n x

(w+1)
k = x

(w)
k x

(w+1)
n+1 (k < n < w)(

t
(w)
n

)2
= 1 (1 ≤ n < w)

t
(w)
n t

(w)
n+1t

(w)
n = t

(w)
n+1t

(w)
n t

(w)
n+1 (n+ 1 < w)

t
(w)
n x

(w)
k = x

(w)
k t

(w+1)
n+1 (k + 1 < n < w)

t
(w)
n x

(w)
n−1 = x

(w)
n t

(w+1)
n t

(w+1)
n+1 (n < w)

t
(w)
n x

(w)
n = x

(w)
n−1t

(w+1)
n+1 t

(w+1)
n (n < w)

t
(w)
k x

(w)
n = x

(w)
n t

(w+1)
k (k < n < w)

Again, the first family of relations implies that V contains a copy of F . Substituting

n = w − 1 into the last family of relations gives:

t
(k+2)
k = t

(k+3)
k = t

(k+4)
k = · · ·

Let tk denote this element, and let uk denote the element t
(k+1)
k . Then the relations

for V reduce to the given relations for V = π1(V , 1).

There is a braided version of V called BV , introduced by Matt Brin [Brin].

It is the fundamental group of the groupoid BV of right fractions of the category

P [Bw] obtained by attaching a copy of the braid group Bw to each object of P :
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" #  $  
B �  

B �  
B �  

B �  
B �  
B �  â  %  

F �  F �  F �  F �  

This category satisfies the relations:

bxn = xb−1(n)sn(b) (b ∈ Bw and n < w)

where b−1(n) indicates the action of the braid b−1 on n via the projection Bw � Σw,

and sn : Bw → Bw+1 is the function that doubles the n’th strand of a braid:

 

, = � Ð ,Ñ  

Any element of the groupoid BV can be represented by a braided strand diagram:

 

Theorem 7.4.5. The group BV is generated by the elements {x0, x1, x2, . . . },

{t1, t2, t3, . . . }, and {u1, u2, u3, . . . }, with relations:

xnxk = xkxn+1 for k < n

tntn+1tn = tn+1tntn+1, tnun+1tn = un+1tnun+1
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and:

tnxk = xktn+1, unxk = xkun+1 for k < n− 1

tnxn−1 = xntntn+1, unxn−1 = tnun+1

tnxn = xn−1tn+1tn, un = xn−1un+1tn

tkxn = xntk for k < n
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