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1 Definitions and Examples

1.1 Definition. A category C consists of

(i) A collection ob C of objects A,B,C, ...

(ii) A collection mor C of morphisms f, g, h, ...

(iii) A rule assigning to each f ∈ mor C two objectives dom f and cod f , its

domain and codomain. We write f : A → B. or A
f−→ B for ‘f is a

morphism with dom f = A and cod f = B.’

(iv) For each pair (f, g) of morphisms with dom f = cod g, we have a composite
morphism gf : dom f → cod g subject to the axioms that 1Bf = f = f1A
for any f : A→ B and (hg)f = h(gf) where hg and gf are defined.

1.2 Remark.

1. The definition does not depend on set theory. In the context of set theory,
we say that C is a small category if ob C and mor C are sets.

2. We could eliminate objects from the definition by identifying them with the
identity morphisms.

1.3 Examples.

(a) The category of Set has all sets as objects and functions as morphisms
(actually, morphisms are triples (B, f,A) where f ∈ A×B is a function in
the set theoretic sense).

(b) The categories of Gp of groups, Rng of rings and ModR of R-modules have
sets with algebraic structures as objects and homomorphisms as morphisms.

(c) The category of Top of topological spaces and continuous maps, Met
of metric spaces and lipshitz maps and Diff of differential manifolds and
smooth maps.
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(d) The category Htpy has the same objects as Top but the morphisms are
homotopy classes of functions. More generally we can factor out any equiv-
alence relation on morphisms such that if f ' g we have dom f = dom g,
cod f = cod g, fh ' gh and kf ' kg wherever defined.

(e) Given any category C the opposite category Cop has the same objects as C
but dom and cod are interchanged.

(f) A small category with one object is a monoid. In particular every group
can be considered as a category with one object in which every morphism
is an isomorphism.

(g) A groupoid us a category in which every morphism is an isomorphism. For
example, the fundamental groupoid π(X) of a space with points as objects
and homotopy classes of paths as morphisms.

(h) A discrete category is one whose only morphisms are identities (so a small
discrete category is a set). A preorder is a category with at most one mor-
phism from A to B for any objects A,B. Equivalently it is a collection
of objects with a reflexive, transitive relation, so a poset is a small pre-
order whose only isomorphisms are identities. An equivalence relation is a
preorder which is also a groupoid.

(i) The category Rel has sets as objections and morphisms A→ B are relations,
arbitrary subsets R ⊂ B ×A. Composition S ◦R ⊂ C ×B:

S ◦R = {(c, a)|(∃b ∈ B)((c, b) ∈ S ∧ (b, a) ∈ R)}.

Contains Set as a subcategory and also Part of sets and partial functions
(a partial function A→ B is a function on some subset of A).

(j) Let k be a field. The category Matk has the natural numbers as objects
and morphisms n→ m are m×n matrices with entries in k. Composition is
matrix multiplication. Alternatively, given a lattice L, we can form MatL,
whose morphisms are matrices of elements of L, with multiplication given
by [(lij)(mjk)]ik = ∨j(lij ∧mjk).

(k) Given a theory in a formal system, the category DerT has formula of the
formal language as objects and morphisms ϕ→ ψ are derivations of ψ from
ϕ. Composition is concatenation.

1.4 Definition. Let C and D be categories. A functor F : C → D consists of

(i) a mapping A→ FA : ob C → obD

(ii) a mapping f → Ff : mor C → morD such that

• domFf = F dom f

• codFf = F cod f

2



• F1A = 1FA

• F (gf) = (Fg)(Ff) where gf is defined.

1.5 Examples.

(a) We have a functor U : Gp→ Set sending a group to its underlying set and
a group homomorphism to its underlying function. Similarly for Top, etc..
We also have U : Rng→ Gp. These are called forgetful functors.

(b) There is a functor F : Set → Gp sending a set A to the free group FA

generated by A and a function A
f−→ B to the unique homomorphism Ff :

FA→ FB sending each generator a ∈ A to f(a) ∈ B ⊂ FB.

(c) We have a functor P : Set → Set sending A to its power set PA and
f : A → B to the mapping Pf : PA → PB sending a subset A′ ⊂ A to
f(A′). But we also have P∗ : Set → Setop defined by P∗A = PA and
P∗f(B′) = f−1(B′). By a contravariant functor C → D we mean a functor
C → Dop (we can also speak of covariant).

(d) We have a functor (−)∗ : Modop
k →Modk sending a vector space V over

k to its dual.

(e) We write Cat for the (large) category of small categories and the functions
between them. Then C → Cop defines a functor Cat → Cat with F op

defined to be F .

(f) A functor between monads is a homomorphism, etc...

(g) A functor between posets is an order preserving function.

(h) Let G be a group, considered as a category. A functor F : G→ Set is a set
A = F∗ equipped with an action of G, i.e. a permutation representation
of G. Similarly for any field k, a functor G → Modk is just a k-linear
representation of G.

(i) We have functors πn : Htpy∗ → Gp (Htpy∗ is the category of pointed
topological spaces and basepoint respecting homotopy classes of basepoint
preserving continuous maps). πn sends (X,x) to its n-th homotopy group.
Similarly, we have functors Hn : Htpy → AbGp sending X to its n-th
homology group.

1.6 Definition. Let C, D be two categories and F,G : C → D two functors. A
natural transformation α : F → G consists of a mapping A → αA from ob C to
morD such that αA : FA→ GA for any A and

FA
αA //

Ff

��

GA

Gf

��
FB

αB

// GB
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commutes for every f : A → B in C. These obviously compose, so we have a
category [C,D] of functors C → D and natural transformations between them.

1.7 Examples.

(a) Let k be a field. The double dual operation V → V ∗∗ defines a covariant
functor Modk → Modk. For every V we have a canonical mapping αV :
V → V ∗∗ sending x ∈ V to the mapping ϕ → ϕ(x). The αV ’s are the
components of a natural transformation 1Modk

→ (−)∗∗. If we restrict
to the category of fdModk, of finite dimensional vector spaces, then the
αV ’s are isomorphisms for all V . This implies that α is an isomorphism in
[fdModk, fdModk].

(b) Let P : Set → Set be the (covariant) power set functor of 1.5c. There is
a natural transformation η : 1Set → P such that ηA : A → PA sends each
a ∈ A to {a}.

(c) Let G,H be groups, f, g : G→ H two homomorphisms. What is a natural
transformation α : f → g? It defines an element y = α∗ of H such that for
any x ∈ G, we have yf(x) = f(x)y, g(x) = yf(x)y−1.

(d) For every pointed space (X,x) and n ≥ 1, there is a canonical mapping
hn : πn(X,x) → Hn(X) (the Hurewicz homomorphism). This is a natural
transformation from πn : Htpy∗ → Gp to the composition Htpy∗ →
Htpy

Hn−−→ AbGp→ Gp.

1.8 Definition. Let F : C → D be a functor.

(i) Say F is faithful if given any two objects A,B of C and two morphisms
f, g : A→ B, Ff = Fg implies f = g.

(ii) We say F is full if, given two objects A,B of C any morphism FA
g−→ FB

in D is of the form Ff for some f : A→ B in C.

(iii) We say that a subcategory C′ of C is full if the inclusion C′ → C is a full
functor. Ex. AbGp→ Gp is full.

1.9 Definition. Let C and D be categories. By an equivalence of categories
between C and D, we mean a pair of functors, F : C → D and G : D → C together
with natural isomorphisms α : 1C → GF , β : FG→ 1D.

1.10 Lemma. [Assuming AC] A functor F : C → D is part of an equivalence
iff it is full, faithful and essential surjective on objects (i.e. every B ∈ obD is
isomorphic to some FA).

Proof. Suppose we have G, α, β as above. For any B ∈ obD, we have B ∼= FGB,

so F is essentially surjective. Suppose that we have A
g−→−→
f
B in C with Ff = Fg,

then GFf = GFg, so

f = α−1
B (GFf)αA = α−1

B (GFg)αA = g
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so F is faithful.

Suppose C
G←−−→
F
D, α : 1C → GF , β : FG→ 1D. Suppose that A,A′ ∈ ob C and

g : FA→ FA′ in D. Let f be the composite

A
αA−−→ GFA

Gg−−→ GFA′
α−1

A′−−→ A′,

then GFf = Gg since both morphisms make the diagram

A
f //

αA

��

A′

αa′

��
GFA

GFf
// GFA′

commute. But G is faithful since it is part of an equivalence, so Ff = g.
Conversely, suppose that F is full, faithful and essentially surjective. For each

B ∈ obD pick A ∈ ob C such that βB : FA → B is an isomorphism. Write GB
for A. Given g : B → B′, we have a composite

FGB
βB−−→ B

g−→ B′
β−1

B′−−→ FGB′

which must be Ff for a unique f : GB → GB′. Define f to be Gg. Given
g′ : B′ → B′′ the morphisms (Gg′)(Gg) and G(gg′) have the same image under
F , thus they are equal. Thus G is a functor and β is a natural transformation

from FG → 1D. We know that FGFA
βFA−−−→ FA is an isomorphism, so β−1

FA is
of the form FαA for a unique αA : A→ GFA which must be an isomorphism by
the faithfulness of F . Given f : A→ A′ in C, the composite αA′f and (GFf)αA
have the same image under F by naturality of β−1 and they are equal.

1.11 Examples.

(a) Given a category C and a particular object B of C we write C/B for the

category whose objects are morphisms A
f−→ B with codomain B in C and

whose morphisms are commutative triangles

A
g //

f ��

A′

f ′~~
B

in C. For C = Set we have an equivalence of categories Set/B ∼= SetB .

The functor F : Set/B → SetB sends A
f−→ B to (f−1(b)|b ∈ B) and

G : SetB → Set/B sends (Ab|b ∈ B) to
⋃

(Ab × {b}) mapping to B by
second projection.
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(b) The coslice category B/C is defined as (Cop/B)op. In particular 1/Set
(where 1 = {x}) is isomorphic to the category Set∗ of pointed sets (via

the functor sending 1
f−→ A to (A, f(x))). It is also equivalent (but not

isomorphic) to the category Part of sets and partial functions. The functor
F : Set∗ → Part sends (A, a) to A/{a} and f : (A, a) → (B, b) to the
partial function which agrees with f at a′ ∈ A when f(a) 6= b is is undefined
otherwise. In the other direction, G : Part → Set∗ sends a set A to
A+ = A ∪ {A} with A as a basepoint and a partial function f : A → B
to f+ defined by f+(a) = f(a) if a ∈ A and f(a) is defined, otherwise
f(a) = B. Note that FG is the identity but GF is not. We see this since
Part contains the object ∅ which is the only member of its isomorphism
class, but in Set∗ each isomorphism class contains many members.

(c) The Categories fdModk and fdModop
k are equivalent via the dual space

functor and the natural isomorphism 1fdModk
→ (−)∗∗ on both sides.

(d) fdModk is also equivalent to Matk. We have to choose a basis for every

finite dimensional vector space and define F (v) = dim(V ) and F (V
θ−→ W )

to the matrix representing θ with reference to the chosen basis. G : Matk →
fdModk sends n to kn and a matrix A to f : x→ Ax. The composite FG
is the identity on Matk (provided we made good choices for the basis).

1.12 Definition. Given a category C, by a skeleton of C we mean a full sub-
category containing exactly one object from each isomorphism class of objects
of C. Note that 1.10 implies for any skeleton C′ of C the inclusion is part of an
equivalence. Any equivalence between skeletal categories is bijective on objects
and hence in fact and isomorphism.

1.13 Remark. The following statements are each equivalent to the axiom of choice:

1. Any category has a skeleton.

2. Any category is equivalent to any of its skeletons

3. Any two skeletons of a given category are isomorphic.

2 The Yoneda Lemma

2.1 Definition. A category C is locally small if for any two objects A, B of C, the
collection of all morphisms A→ B in C is a set C(A,B). If C is locally small, then
the mapping B → C(A,B) is a functor C(A,−) : C → Set. Given a morphism
g : B → C in C, C(A, g) : C(A,B) → C(A,C) sends f ∈ C(A,B) to gf . Similarly
A→ C(A,B) defines a functor C(−, B) : Cop → Set.

2.2 Lemma. (Yoneda)

(i) Let C be a locally small category, A ∈ ob C and F : C → Set a functor.
Then there is a bijection between natural transformations C(A,−)→ F and
elements of FA.
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(ii) Moreover, the bijection is natural in A and F .

Proof of Lemma 2.2(i). Given α : C(A,−)→ F , we define Φ(α) = αA(1A) ∈ FA.
Conversely given x ∈ FA, we define Ψ(x) : C(A,−) → F by Ψ(x)B(f) = Ff(x)
for any B ∈ ob C and any f : A→ B. We need to verify naturality of Ψ(x), that
is we need to show that

C(A,B)
Ψ(x)B //

C(A,g)

��

FB

Fg

��
C(A,C)

Ψ(x)C

// FC

commutes. But we have

(Fg)(Ψ(x)B(f)) = (Fg)((Ff)(x))

and
Ψ(x)C(C(A, g)(f)) = Ψ(x)C(gf) = (F (gf)(x)),

since F is a functor these two are equal and the diagram commutes. Given x we
have

ΦΨ(x) = Ψ(x)A(1A) = F (1A)(x) = x.

Given any α : C(A,−)→ F , B ∈ ob C and f : A→ B, we have

αB(f) = αB(C(A, f)(1A)) = (Ff)(αA(1A)) = (Ff)(Φ(α)) = (ΨΦ(α))B(f)

by the naturality of α.

2.3 Corollary. For a locally small category C, there is a full and faithful functor
Y : Cop → [C,Set], the Yoneda embedding, sending A ∈ ob C to C(A,−).

Proof. Put F = C(B,−) in 2.2(i), then we have a bijections between morphisms
B → A in C(B,A) and morphisms C(A,−)→ C(B,−) in [C,Set], which we take
to be the effect of Y on morphisms. We need to check that this is functorial:

suppose that we are given C
g−→ B

f−→ A in C. Then Y (g)Y (f) : C(A,−) →
C(C,−) is determined by its effects on 1A ∈ C(A,A), but Y (f)A sends this to
f ∈ C(B,A) and Y (g)A(f) = C(C, f)g = fg and we also have Y (fg)A(1A) = fg,
so Y (fg) = Y (f)Y (g).

To explain 2.2(ii), suppose for the moment that C is small, then [C,Set] is
locally small since a natural transformation F → G is a set-indexed family of
functions αA : FA → GA. We have a functor C × [C,Set] → Set sending (A,F )
to F (A) and another functor which is the composition

C × [C,Set]
Y×1[C,Set]−−−−−−−→ [C,Set]× [C,Set]

[C,Set](−,−)−−−−−−−−→ Set.

2.2(ii) says these two functors are isomorphic. More precisely, it makes the ele-
mentary assertations about the equality of two things to which it reduced.
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Proof of Lemma 2.2(ii). Naturality in A: Suppose that we are given f : A → B,
a functor F and a natural transformation α : C(A,−) → F . We have to show
that

[C,Set](C(A,−), F )
Φ //

α 7→α◦Y (f)

��

FA

Ff

��
[C,Set](C(B,−), F )

Φ
// FB

commutes. But we have

Φ(α ◦ Y (f)) = αB(Y (f)(1B)) = αB(f)

= αB(C(A, f)(1A)) = (Ff)(αA(1A)) = (Ff)Φ(α),

as needed.
Naturality in F: Suppose that we are given θ : F → G and α : C(A,−) → F ,

we have to show that

[C,Set](C(A,−), F )
Φ //

α 7→θ◦α
��

FA

θA

��
[C,Set](C(A,−), G)

Φ
// GA

commutes. We have

θAΦ(α) = θA(αA(1A)) = Φ(θ ◦ α),

as needed.

2.4 Definition. We say a functor F : C → Set is representable if it is naturally
isomorphic to C(A,−) for some A. By a representation of F , we mean a pair
(A, x) where A ∈ C and x ∈ FA such that Ψ(x) : C(A,−)→ F is an isomorphism.
We call x a universal element of F , it has the property that any y ∈ FB is of the
form Ff(x) for some unique f : A→ B.

2.5 Corollary. Given 2 representations (A, x) and (B, y) of the same functor F ,
there is a unique isomorphism f : A→ B in C such that Ff(x) = y.

Proof. Consider the composite C(B,−)
Ψ(y)−−−→ F

(Ψ(x))−1

−−−−−−→ C(A,−). By 2.3 there
is a unique f : A→ B in C with Y f = Ψ(x)−1Ψ(y) and a unique g : B → A with
Y g = (Y f)−1 and gf = 1A, fg = 1B , since Y is faithful. Moreover, the equation
Y f = Ψ(x)−1Ψ(y) is equivalent to Ψ(x)Y f = Ψ(y), but these two are equal iff
they have the same effect on 1B , i.e. iff Ff(x) = y.

2.6 Examples.

(a) The forgetful functor U : Gp → Set is represented by (Z, 1) since for any
group there is a unique homomorphism Z → G sending 1 to x. Similarly,
U : Top→ Set is represented by (1, ∗).
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(b) The contravariant power set functor P∗ : Setop → Set is represented by
({0, 1}, {1}), since if A′ ⊂ A there is a unique χA′ : A → {0, 1} such that
(χA′)

−1(1) = A′.

(c) For a field k, the composite functor Modop
k

(−)∗−−−→ Modk
U−→ Set is repre-

sentable by (k, 1k).

(d) Let G be a group and G be G as a category. The category [G,Set] is
the category of sets with a G action. The unique representable functor
G → Set is the Cayley representation of G, i.e. G itself with action via
left multiplication. In this case the Yoneda lemma tells us that this is the
free G-set on one generator: natural transformations η : G(∗,−) → F in
[G,Set], that is functions η∗ : G → F∗ = A commuting with the G-action,
correspond bijectively to elements of A.

(e) Let C be any locally small category, A,B ∈ ob C. Consider the functor
F = C(−, A) × C(−, B) : Cop → Set. What does it mean for this to be
representable? A representation consists of some object P together with
an element (p : P → A, q : P → B) of FP , such that for any C and any
f : C → A, g : C → B there is a unique h : C → P such that ph = f and
qh = g.

A P
p

oo q // B

C

f
__

h

OO

g

??

We can ask whether this exists in any category C, not necessarily locally
small. If it does, we call (P, p, q) a categorical product of A and B and
normally denote it (A×B, π1, π2). Note that in Set the categorical product
and cartesian product coincide. In Gp, Rng, Top, etc... this is also true.
A coproduct in C is a product in Cop. We usually denote the coproduct of
A and B by A+B. In Set A+B is the disjoint union of A and B, the same
in Top. But in Gp, the coproduct is the free product A ∗ B. In AbGp
the coproduct A ∗ B is isomorphic to A × B and is usually denoted ⊗. In
any poset (P,≤), the product is a greatest lower bound and the coproduct
is the least upperbound.

(f) Assume C is locally small. Suppose that we are given a parallel pair A
g−→−→
f
B

in C. Consider the functor F defined by FC = {h : C → A : fh = gh}, a
subfunctor of C(−, A). Is this representable? A representation consists of
(E, e) whose e : E → A satisfies fe = ge and any h : C → A with fh = gh
factors uniquely as ek for some k : C → E. Such an e is called an equalizer
of f and g. In Set we take E = {a ∈ A : f(a) = g(a)} and e to be the
inclusion. This construction also works in Gp, Rng, Modk and Top. The
dual notion is that of the coequalizer, it exists for any pair of morphisms,
but the construction is different.
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2.7 Definition. We say a morphism A
f−→ B is a monomorphism if fg = fh

implies g = h for any pair C
h−→−→
g
A. Dually, f is an epimorphism if kf = ef

implies k = l. We say f is a regular monomorphism if it occurs as an equalizer of
a pair of maps. (Dually for epimorphism).

In Set, monomorphism, regular monomorphism and injection are all syn-
onyms. If f : A→ B is injective form C = B × {0, 1}/ ∼ where (b, j) ∼ (c, k) iff
b = c and j = k or b = c = f(a) for some a ∈ A. Then the two injections B → C
have equalizer {b ∈ B : b = f(a)} ∼= A. If f is not injective, then we can find
x, y : 1 → A with x 6= y but fx = fy. Similarly, all epimorphisms are regular
epimorphisms and are surjective. These don’t hold in all categories. They do hold
in Gp, but not in Mon because the inclusion of N → Z is an epimorphism in
Mon, also monic, but is not a regular monomorphism since an epic equalizer has
to be an isomorphism. Similarly in Top monic and injective are the same as are
epic and surjective. A regular monomorphism is subspace inclusion and a regular
epimorphism is a quotient map. There are bijective continuous maps that are not
homeomorphisms, We say C is balanced if every morphism which is both epic and
monic in C is an isomorphism. So Set, Gp are balanced but Top and Mon are
not.

2.8 Definition. Let C be a category, G be a class of objects of C.

(i) We say that G is a separating family if, given A
g−→−→
f
B, with f 6= g, there

exists G ∈ G and h : G→ A such that fh 6= gh.

(ii) We say that G is a detecting family if, given f : A → B such that every
g : G→ B with G ∈ G factors uniquely as fh, then f is an isomorphism.

If C is a locally small category, this translates to:

1. G is a separating family iff {C(G,−)|G ∈ G} are jointly faithful.

2. G is a detecting family iff {C(G,−)|G ∈ G} are jointly isomorphism reflect-
ing.

2.9 Lemma.

(i) Suppose C has equalizers for all parallel pairs. Then every detecting family
of objects in C is a separating family.

(ii) Suppose C is balanced, then every separating family is a detecting family.

Proof.

1. Suppose G is a detecting family and suppose A
g−→−→
f

B is such that every

h : G → A with G ∈ G satisfies fh = gh. Then every such h factors
uniquely through the equalizer e : E → A of (f, g), so e is an isomorphism.
Hence f = g.
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2. Suppose G is a separating family and suppose f : A → B is such that
g : G → B with G ∈ G factors uniquely through f . Then f is epic since if
h, k : B → C satisfy hg = kf , then any g : G→ B must satisfy kg = hg so

k = h. Similarly, if D
m−→−→
l
A satisfy fl = fm, then for any n : G → D we

have fln = fmn, so ln and mn are both factorizations of fln through f , so
they are equal. Hence l = m, so f is monic. This f is an isomorphism since
C is balanced.

2.10 Examples.

(a) ob C is always a detecting and separating family for C. Eg. If f : A → B
is such that all g : G → B factor uniquely through f then there exists
h : B → A such that fh = 1B , then fh and 1A are both factorizations of f
through f , so they are equal.

(b) For any locally small C, {Y A : A ∈ ob C} is a separating and detecting
family for [C,Set]. For if α : F → G is an arbitrary natural transformation,
then if every Y A → G factors uniquely through α, αA is bijective, and if
this holds for all A then α is an isomorphism.

(c) {1} is both a separating and detecting family for Set since Set(1,−) is
isomorphic to the identity functor. {Z} is both for Gp and AbGp since
Gp(Z,−) is isomorphic to the forgetful functor.

(d) {1} is a separating family for Top since U : Top→ Set is faithful. However,
there is no detecting set of objects: for any infinite cardinal κ, we can find a
set X with cardinality of κ and two topologies τ1, τ2 on X such that τ1 ⊂ τ2,
but the two topologies coincide on any subset of X of cardinality less then
κ. For ω take the discrete and finite complement topologies. Given any set
G of objects of Top, choose κ > card(UG) for all G ∈ G. Then G cannot
detect the fact that 1X : (X, τ1)→ (X, τ2) is not an isomorphism.

(e) Let C be the category of connected, pointed cw-complexes and homotopy
classes of continuous maps between them. JHC Whiteheads Theorem asserts
that if f : X → Y in this category induces isomorphisms πn(X) → πm(Y )
for all n, m, then it is an isomorphism by, say, Sn, so this says that {Sn :
n ≥ 1} is a detecting set for G. If {Gi|i ∈ I} where a separating family,
then X 7→

∏
i∈I C(G,X) would be faithful.

2.11 Definition. Let C be a category, P ∈ ob C. We say P is projective if, given
any diagram of the form

P

g

��
A

f // B
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with f epic, there exists h : P → A with fh = g. If C is locally small, this says
that C(P,−) preserves epics. We say that P is injective in C if it is projective
in Cop. More generally, if η is a class of epimorphisms in C, we say that P is
η-projective if the above holds true for all f ∈ η.

2.12 Lemma. Let C be locally small. Then for any A ∈ ob C, Y A is η-projective
in [C,Set] where η is the class of natural transformations α such that αB is
surjective for all B. In fact these are all epimorphisms.

Proof.
Y A

β

��
F

α // G

β corresponds to some y ∈ GA, αA is surjective, so y = αA(x) for some x, i.e.
there exists γ : Y A→ F with αγ = β by the naturality of the Yoneda lemma. To
be exact, if Ψ is defined as in the proof of the Yoneda lemma, then

Ψ(β) = y = αA(y) = αA(Ψ(γ)) = Ψ(αγ),

since Ψ is a bijection β = αγ.

3 Adjunctions

3.1 Definition. Suppose that we are given categories C and D and functors
F : C → D and G : D → C. We say that F is left adjoint to G if we are
given, for each A ∈ ob C and B ∈ obD, a bijection between morphisms FA→ B
and A → GB which is natural in A and B. If C and D are locally small, this
means that the functors Cop × D → Set sending (A,B) to D(FA,B) and to
C(A,GB) are naturally isomorphic. F a G means F is left adjoint to G, i.e.
D(FA,B) ∼= C(A,GB).

3.2 Examples.

(a) The free functor F : Set → Gp is left adjoint to the forgetful functors U :
Gp→ Set. For any function f : A→ UG, there is a unique homomorphism
f : FA→ G extending f . Similarly for free rings, R-modules, etc...

(b) The forgetful functor U : Top → Set has a left adjoint D sending A to
A with the discrete topology. Since A → UX is continuous as a map from
DA→ X. U also has a right adjoint, I, sending A to the indiscrete topology.

(c) The functor ob : Cat→ Set has a left adjoint D, sending A to the discrete
category where objects are members of A (since a functor DA → C is
uniquely determined by its effects on objects), and a right adjoint I sending
A to the preorder with objects a ∈ A and one morphism a → b for all
(a, b) ∈ A×A (again, a functor C → IA is uniquely determined by its effect
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on objects). In this case D also has a left adjoint, π0 sending C to its set of
connected components, i.e. equivalence classes of objects for the equivalence
relation ∼ generated by U ∼ V is there exists a morphism U → V (once
again, a functor C → DA is determined by by its effects on objects, but this
function ob : C → A must be constant on connected components).

(d) Let 1 denote the category with one object and one morphism. For any C,
there is a unique functor C → 1, a left adjoint, if it exists, picks out an
initial object of C, the right adjoint picks out a terminal object.

(e) Idem the category whose objects are pairs (A, e) where A is a set and
e : A→ A satisfies e2 = e, and morphisms f : (A, e)→ (A′, e′) are functions
such that e′f = fe. We have a functor G : Idem → Set sending (A, e) to
im e and a functor F : Set→ Idem sending A to (A, 1A). F is both left and
right adjoint to G: a morphism f : FA → (B, e) must take values in GB,
but any function A→ GB is a morphism FA→ (B, e). On the other hand,
a morphism g : (B, e)→ FA must satisfy g(b) = g(e(b)) for any b ∈ B, so it
is uniquely determined by its restriction to GB. Note that GF = 1Set but
FG ∼= 1Idem.

(f) Let (X,T ) be a topological space. If we think of T as a poset, then T → PX
is a functor. The operation A 7→ Å gives a right adjoint to this functor, since
by definition we have U ⊂ A iff U ⊂ Å for U ∈ T . Similarly, closure is a
left adjoint for the inclusion of the closed sets.

(g) The functor P∗ : Set → Setop is left adjoint to P∗ : Setop → Set, since
morphisms P∗A → B in Setop are functions B → P∗A in Set, which cor-
responds to relations B 9 A and morphisms A→ P∗B in Set corresponds
to relations A 9 B. These correspond bijectively, in a natural way. This
becomes symmetric, if we write this as Set(A,P∗B) ∼= Set(B,P∗A). We
say P∗ is self adjoint on the right.

(h) Given two sets, A and B and some relations R ⊂ A×B, we have a mapping
(−)r : PA → PB sending S ⊂ A to Sr its related elements via R. and
(−)l : PB → PA sending T ⊂ A to T l, the elements in A related to
T . These are covariant functors, adjoint to each other on the right, since
T ⊂ Sr iff S × T ⊂ R iff S ⊂ T l.

3.3 Theorem. Suppose that we are given G : D → C. For each object A of
C, consider the category (A ↓ G) whose objects are pairs (B, f) with B ∈ obD
and f : A → GB in C and whose morphisms (B, f) → (B′, f ′) are morphisms
g : B → B′ such that

A
f //

f ′ !!

GB

Gg

��
GB′

commutes. Then specifying a left adjoint for G is equivalent to specifying an initial
object of (A ↓ G) for each A.

13



Proof. Suppose G has a left adjoint F . For any A, the morphism 1FA : FA→ FA
corresponds to a morphism ηA : A→ GFA, called the unit of the adjunction. We
claim (FA, ηA) is an initial object of (A ↓ G), For, given an arbitrary (B, f), the
diagram

A
ηA //

f ""

GFA

Gg

��
GB

commutes iff f : A→ GB is the morphism corresponding to FA
1FA−−−→ FA

g−→ B.
Suppose that we are given an initial object of (A ↓ G) for each A ∈ ob C.

Denote this object by (FA, ηA): this defines F on objects. given f : A → A′ in
C, define Ff : FA→ FA to be the unique morphism such that

A
ηA //

f

��

GFA

GFf

��
A′

ηA′
// GFA′

commutes, i.e. the unique morphism (FA, ηA)→ (FA′, ηa′f) in (A ↓ G).
If we have f ′ : A′ → A′′, then F (f ′f) and (Ff)(Ff ′) are both morphisms

(FA, ηA) → (FA′′, ηA′′f
′f), so they must be equal. Hence F is a functor and

η is a natural transformation 1C → GF . We have a bijective correspondence
between morphisms f : A → GB and morphisms g : FA → B. Take g to be the
unique morphism such that (Gg)ηA = f . Naturality in B is immediate from the
form of the definition. Naturality in A follows from the fact that η is a natural
transformation.

3.4 Corollary. Any two left adjoints F , F ′ for a given functor G are (canoni-
cally) isomorphic.

Proof. For each A, there is a unique isomorphism (FA, ηA) → (F ′A, η′A) in
(A ↓ G) called hA : FA→ F ′A. To verify that this is natural in A we first need
to establish that if Ψ is the mapping between C(A,GB) and D(FA,B), then if

A
f //

g !!

GB

Gh
��

GC

commutes then so does

FA
ΨB(f) //

ΨC(g) !!

B

h
��
C

14



that is, given (Gh)f = g, we want hΨB(f) = ΨC(g). But this follows from
the fact that Ψ can be seen as a natural transformation between C(A,G−) and
D(FA,−). That is, we have, for any h : B → C, D(FA, h)◦ΨB = ΨC ◦C(A,Gh),
so we have hΨB(f) = ΨC((Gh)f) = ΨC(g) as needed. Now, it is clear that all
the triangles in this diagram commute for any f : A→ A′:

GFA
GhA //

GFf

��

GF ′A

GF ′f

��

A

ηA

bb

η′A

;;

ηA′f

||

η′
A′f

##
GFA′

GhA′
// GF ′A′

Thus they commute when we pass through Ψ as above, so the square

FA
hA //

Ff

��

F ′A

F ′f
��

FA′
hA′
// F ′A′

commutes. Hence the isomorphism is natural.

3.5 Lemma. Given functors C
G←−−→
F
D

K←−−→
H
E with F a G and H a K then

HF a GK.

Proof. We have bijections between morphisms HFA→ C and morphisms FA→
KC and morphisms A→ GKC, natural in A and C.

3.6 Corollary. Suppose that we are given a commutative square of categories and
functors

C G1 //

G2

��

D

G3

��
E

G4

// F

and suppose that each Gi has a left adjoint Fi. Then

F F4 //

F3

��

E

F2

��
D

F1

// C

commutes up to isomorphism.

15



Proof. Immediate from 3.4, 3.5

Given an adjunction C
G←−−→
F
D, F a G, we have a natural transformation 1C →

GF and dually a natural transformation FG → AD, the unit and counit of the
adjunction.

3.7 Theorem. Given functors C
G←−−→
F
D specifying an adjunction F a G is equiv-

alent to specifying a natural transformation η : 1C → GF and ε : FG → 1D
satisfying the triangular identities:

F
Fη //

1F ""

FGF

εF

��
F

G
ηG //

1G ""

GFG

Gε
��
G

Proof. Suppose that we are given an adjunction F a G with unit η and counit
ε. By definition ηA : A → GFA corresponds to 1FA : FA → FA and εFA :
FGFA → FA corresponds to 1GFA : GFA → GFA so εFAFηA : FA → FA

corresponds to A
ηA−−→ GFA

1GFA−−−→ GFA. Hence εFAFηA = 1FA, dually for the
other triangle.

Conversely, suppose that we are given η and ε satisfying the identities. Given

f : A → GB, define Φ(f) : FA → B to be the composite FA
Ff−−→ FGB

εB−−→ B.

Given g : FA→ B, define Ψ(g) : A→ GB to be A
ηA−−→ GFA

Gg−−→ GB. As in the
proof of 3.3, we know that Φ and Ψ are natural in A and B. To show that they
are inverse to each other:

ΨΦ(f) = A
ηA−−→ GFA

GΦ(f)−−−−→ GB = A
ηA−−→ GFA

GFf−−−→ GFGB
GεB−−−→ GB

= A
f−→ GB

ηGB−−−→ GFGB
GεB−−−→ GB = A

f−→ GB

by the naturality of η and the second triangular identity. Similarly ΦΨ(g) = g for
any g : FA→ B.

3.8 Lemma. Suppose that we are given C
G←−−→
F
D with F a G and counit ε : FG→

1D. Then

(i) G is faithful iff εB is an epimorphism for all B.

(ii) G is full and faithful iff ε is an isomorphism.

Proof.

1. Suppose εB is epic for all B, and suppose g, g′ : B → B′ satisfying Gg = Gg′.
Then the morphisms FGB ⇒ B′ corresponding to Gg and Gg′ are equal,
but these are gεB and g′εB respectively and eB is epic, so g = g′. Conversely,

suppose G is faithful, and B
g′−→−→
g
B′ satisfy gεB = g′εB , then Gg = Gg′ so

g = g′.
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2. Suppose ε is an isomorphism. By i we know G is faithful, so we need only
prove G is full. Suppose that we are given g : GB → GB′ transposing we
get f̄ : FGB → B′. Then if we set g = f̄(ε−1

B ) : B → B′ we have Gg
corresponding to f̄ . so Gg = f .

Conversely, suppose G is full and faithful. Then GB
ηGB−−−→ GFGB must

be of the form Gh for some h : B → FGB. But (GεB)(nGB) = 1GB so
εBh = 1B since G is faithful. hεB corresponds, under the adjunction, to

GB
ηGB−−−→ GFGB

GεB−−−→ GB
Gh−−→ GFGB and Gh = 1GB so hεB = 1FGB .

3.9 Definition. By a reflection we mean an adjunction satisfying the conditions
of 3.8(ii). We say that C′ is a reflective subcategory of C if the inclusion is full
and faithful and has a left adjoint.

3.10 Examples.

(a) The subcategory AbGp of Gp is reflective. Given an arbitrary group G,
let G′ be the derived subgroup, then G/G′ is abelian and any morphism
G→ A where A is abelian factors uniquely through G→ G/G′.

(b) The subcategory tfAbGp, of torsion free abelian groups is reflective in
AbGp. The reflector sends A→ A/ torA, the torsion free subgroup. Also,
the subcategory tAbGp of torsion abelian groups is reflective in AbGp.
The counit of this adjunction is the inclusion At ↪→ A.

(c) The category kHaus of compact hausdorf spaces is reflective in Top. The
reflector is the Stone-Čech compactification x 7→ βx.

3.11 Lemma. Suppose we have an equivalence of categories C
G←−−→
F
D, α : 1C →

GF , β : FG → 1D. There exist natural transformations α′ : 1C → GF , β′ :
FG→ 1D, which satisfy the triangular identities so that F a G and also G a F .

Proof. First note that

1C
α //

α

��

GF

GFα

��
GF

αGF

// GFGF

commutes by the naturality of α. But α is pointwise epic, so GFα = αGF .
Similarly FGβ = βFG. Now define α′ = α and let β′ be the composite

FG
β−1
FG−−−→ FGFG

(FαG)−1

−−−−−−→ FG
β−→ 1D.

To verify the triangular identities, the composite (Gβ′)(α′G) is

G
αG−−→ GFG

(GFGβ′)−1

−−−−−−−→ GFGFG
(GFαG)−1

−−−−−−−→ GFG
Gβ−−→ G

= G
(Gβ)−1

−−−−−→ GFG
αGFG−−−−→ GFGFG

(αGFG)−1

−−−−−−−→ GFG
Gβ−−→ G = G

1G−−→ G
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by the naturality of α and GFα = αGF . Similarly (β′F )(Fα) is

F
Fα−−→ FGF

(βFAF )−1

−−−−−−→ FGFGF
(FαGF )−1

−−−−−−−→ FGF
βF−−→ F

= F
(βF )−1

−−−−→ FGF
FGFα−−−−→ FGFGF

(FGFα)−1

−−−−−−−→ FGF
βF−−→ F = F

1F−−→ F

by naturality of β and αGF = GFα.

4 Limits

4.1 Definition. Let J be a category (almost always small, often finite). By a
diagram of shape J in a category C we mean a functor D : J → C. The objects
D(j), j ∈ ob J are called verticies of D and the morphisms D(α), α ∈ mor J are
the edges of D. For example, if J is the finite category

· //

����

·

��
· // ·

a diagram of shape J is a commutative square. If J is the category

· //

������

·

��
· // ·

,

a diagram of shape J is a not necessarily commutative square.
For any object A of C and any J , we have a constant diagram 4A of shape

J , all of whose verticies are A and all of whose edges are 1A. By a cone over
D : J → C with a summit of A, we mean a natural transformation λ : 4A→ D.
Equivalently this is a family (λj : A→ D(j) : j ∈ ob J) of morphisms (the legs of
the cone), such that

A
λj

}}

λj′

""
D(j)

D(α) // D(j′)

commutes for every α : j → j′ in J . Note that 4 is a functor C → [J, C]
and a cone over J is an object of the arrow category (4 ↓ D). We say a cone

(L
λj−→ D(j) : j ∈ ob J) is a limit for D if it is a terminal object of (4 ↓ D).

4.2 Definition. We say that C has limits of shape J if 4 : C → [J, C] has a right
adjoint. By 3.3 this is equivalent to saying that every diagram D : J → C has a
limit.

4.3 Examples.
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(a) If J = ∅, then [J, C] has a unique object and the set of cones over it is
isomorphic to C. So a limit of this diagram is a terminal object of C and a
colimit is an initial object.

(b) If J is a discrete category, a diagram of shape J is just a family of objects

of C and a cone over it is a family of morphisms (A
λj−→ D(j) : j ∈ ob J).

So a limit is a product
∏
j∈ob J D(j). Similarly the colimit produces the

coproduct.

(c) Let J be the finite category ·⇒ · (so a diagram of shape J is a parallel pair
of morphisms). A cone over such a diagram is of the form

C

h

�� k ��
A

f //
g

// B

so fh = k = gh or equivalently a morphism C
h−→ A satisfying fh = gh.

The limit for this diagram is an equalizer for (f, g) (and a colimit is a
coequalizer).

(d) Let J be the finite category
·

��
· // ·

then a diagram of shape J is a pair of morphisms

A

f

��
B

g // C

with common codomain. A cone over this has the form

D
h //

l

  
k
��

A

f

��
B

g
// C

satisfying hf = l = gk or alternatively, a completion of the diagram into
a commutative square. A terminal such completion is called a pullback for
the pair (f, g). If C has products and equalizers, then it has pullbacks. Form
the product

A×B π1 //

π2

��

A

B
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and then the equalizer E
e−→ A×B

fπ1−−→−−→
gπ2

C. Then

E
fπ1 //

gπ2

��

A

B

is a pullback of f along g. A colimit of the shape Jop is called a pushout of
(f, g).

4.4 Theorem.

(i) If C has equalizers and all small (respectively finite) products, then C has all
small (respectively finite) limits.

(ii) If C has pullbacks and a terminal object, then C has all finite limits.

Proof.

1. Let J be small (respectively finite) and D : J → C a diagram. Form the

products P =
∏
j∈ob J D(j) and Q =

∏
α∈mor J D(codα). Now form P

g−→−→
f
Q

defined by παf = πcodα and παg = D(α) ◦ πdomα and the equalizer E
e−→ P

of (f, g). We claim (E
πje−−→ D(j) : j ∈ ob J) is a limit cone for D. It is a

cone since for any edge α : j → j′, we have D(α)πje = παge = παfe = πj′e.

Given any cone (A
λj−→ D(j) : j ∈ ob J) we get a unique λ : A → P such

that πjλ = λj , but then

παfλ = πjλ = λj = D(α)λi = D(α)πiλ = παgλ

for all α : i→ j, so fλ = gλ, so λ factors uniquely as eµ, so µ is the unique
factorization of (λj : j ∈ ob J) through (πje : j ∈ ob J).

2. We can construct the product A×B as the pullback of

A

��
B // 1

where 1 is the terminal object and then construct
n∏
i=1

Ai = (...((A1 ×A2)×A3)...)×An.

Then we can form the equalizer of A
g−→−→
f
B as the pullback of

B

(1B ,1B)

��
A

(f,g)// B ×B

,
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since a cone over this diagram consists of

C
k //

h
��

B

A

satisfying fh = 1Bk and gh = 1Bk.

4.5 Definition. let F : C → D be a functor, J a (small) category.

(i) We say F preserves limits of shape J , if, given D : J → C and a limit cone

(L
λj−→ D(j) : j ∈ ob J), then (FL

Fλj−−→ FD(j) : j ∈ ob J), is a limit cone
for FD in D.

(ii) We say F reflects limits of shape J , if, given D : J → C and a cone (L
λj−→

D(j) : j ∈ ob J) such that (FL
Fλj−−→ FD(j) : j ∈ ob J) is a limit cone for

FD, then the original is a limit for D.

(iii) We say F creates limits if given a limit (M
µj−→ FD(j) : j ∈ ob J) for FD,

then there exists a limit cone (L
λj−→ D(j) : j ∈ ob J) over D mapping to a

limit for FD.

4.6 Corollary. Let F : C → D be a functor. In any version of 4.4, we may
replace ‘C has’ by either ‘C has and F preserves’ or ‘C has and F creates’.

4.7 Examples.

(a) U : Gp → Set creates all small limits, but does not preserve or reflect
colimits (since coproducts in Gp are larger then in Set).

(b) U : Top→ Set preserves all small limits and colimits, but does not reflect
them.

(c) U : C/B → C creates colimits, since a diagram D : J → C/B is the same

thing as a diagram UD : J → C together with a cone (UD(j)
D(j)−−−→ B : j ∈

ob J). So given a colimit (UD(j)
λj−→ L : j ∈ ob J) in C, we get h : L → B

such that the λj are all morphisms D(j) → h in C/B. They form a cones
under D and it is a colimit. But U : C/B → C does not preserve or reflect
products: the product of f : A → B and g : C → B is C/B is the diagonal
of the pullback square

P //

��

A

f

��
C

g
// B

in C.
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(d) Let C and D be categories. The forgetful functor [C,D]→ Dob C creates all
limits and colimits which exist in D. To prove this, let D : J → [C,D] be a
diagram, we can consider it as a functor J × C → D. For each A ∈ ob C we

can form a limit cone (LA
λj,A−−−→ D(j, A) : j ∈ ob J) for D(−, A) : J → D.

For each f : A→ B, the composites (LA
λj,A−−−→ D(j, A)

D(j,f)−−−−→ D(j, B) : j ∈
ob J) form a cone over D(−, B). So they induce a unique Lf : LA → LB
such that λj,BLf = D(j, f)λj,A.

Given g : B → C, we need to show that L(gf) and (Lg)(Lf) are equal.
But,

λj,C(Lg)(Lf) = (D(j, g))(D(j, f))λj,A = (D(j, gf))λj,A = λj,C(L(gf)),

that is they are both factorizations of the same cone (LA
(D(j,gf))λj,A−−−−−−−−−→

D(j, C) : j ∈ ob J) over D(−, C) through the limit LC, so they are equal
by uniqueness. Hence L is a functor L : C → D and each λj,− is a natural
transformation L → D(j,−). The (λj,− : j ∈ ob J) also form a cone over
D (regarded as a diagram of shape J in [C,D]) with summit L. Ex: verify
that this is indeed a limit cone in [C,D].

(e) The inclusion functor AbGp → Gp reflects coproducts, but does not pre-
serve them. A free product (coproduct) G ∗H is never abelian unless G or
H is trivial, and in that event it is also a coproduct in AbGp.

4.8 Remark. A morphism f : A→ B is a monomorphism iff

A
1A //

1A

��

A

f

��
A

g
// B

is a pullback. Hence any functor that preserves/reflects pullbacks, also pre-
serves/reflects monomorphisms.

4.9 Theorem. Suppose G : D → C has a left adjoint F : C → D. Then G
preserves limits that exist in D.

Proof 1. Suppose C and D both have limits of some shape J . Then the diagram

C F //

4
��

D

4
��

[J, C]
[J,F ] // [JD]

commutes and all functors have right adjoints so by Corollary 3.6,

[J,D]
[J,G] //

lim

��

[J, C]

lim

��
D G // C
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commutes upto isomorphism. But this says that G preserves limits of shape J .

Proof 2. Let D : J → D and (L
λj−→ D(j) : j ∈ ob J) be a limit for D. Given

a cone (A
µj−→ GD(j) : j ∈ ob J) over GD in C, we get a family of morphisms

(FA
µ̄j−→ D(j) : j ∈ ob J), which forms a cone over D by the naturality of µ 7→ µ̄.

That is we have a natural isomorphism α : C(A,G−)→ D(FA,−) and β : i→ j
giving diagram

C(A,GD(i))
αD(i) //

C(A,GD(β))

��

D(FA,D(i))

D(FA,D(β))

��
C(A,DG(j))

αD(j)

// D(FA,D(j))

Now, µ̄i = αD(i)(µi), and since GD(β)µi = µj because they form a cone, we see
that µi maps to µ̄j through αD(j)C(A,GD(β)). Since the diagram commutes, this
means that D(β)µ̄i = µ̄j . So we get a unique µ̄ : FA → L such that λjµ̄ = µ̄j
for each j. i.e a unique µ : A→ GL such that (Gλj)µ = µj . So the Gλj forms a
limit cone.

Our aim is to prove that if D has and G : D → C preserves ‘all’ limits, then G
has a left adjoint.

4.10 Lemma. Suppose that D has and G : D → C preserves limits of shape J .
Then (A ↓ G) has limits of shape J for each A ∈ ob C and U : (A ↓ G) → D
creates them.

Proof. Suppose that we are given D : J → (A ↓ G). Write D(j) as (UD(j), A
fj−→

GUD(j)), then the fj form a cone over GUD : J → C. So if (L
λj−→ UD(j) : j ∈

ob J) is a limit for UD, then we get a unique f : A→ GL such that

A
f //

fj ##

GL

Gλj

��
GUD(j)

commutes for each j. i.e. such that each λj form a cone overD with summit (L, f),

since they form a cone over UD and U is faithful. Given any cone ((B, g)
µj−→

(UD(j), fj) : j ∈ ob J) over D in (A ↓ G) the µj also form a cone over UD
with sumit B, so they induce a unique µ : B → L such that λjµ = µj for all j.
We need to show (Gµ)g = f , but there are factorizations of the same cone over
GUD through GL so they are equal. So µ : (B, g)→ (L, f) in (A ↓ G) and its the
unique factorization of (µj : j ∈ ob J) through (λj : j ∈ ob J) in this category.

4.11 Lemma. Specifying an initial object for a category C is equivalent to speci-
fying a limit for 1C : C → C.
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Proof. If I is an initial object, the unique isomorphisms (I → A : A ∈ ob C) form

a cone over 1C . Given any cone (S
λA−−→ A : A ∈ ob C) over 1C , λI : S → I is a

factorization through the cone with sumit I, since

S
λI //

λA ��

I

��
A

commutes.
Suppose that we are given a limit cone (L

λA−−→ A : A ∈ ob C) for 1C . We need
to show that, for each A, λA is the unique morphism L → A. Given f : L → A,
we have a commutative triangle

L
λL //

λA ��

L

f

��
A

In particular, λAλL = λA for all A, so λL is a factorization of the limit cone
through itself. So λL = 1L, and hence any f : L→ A satisfies f = λA.

4.12 Theorem. (Primitive Adjoint Functor Theorem) If D has and G : D → C
preserves all limits, then G has a left adjoint.

Proof. By 4.10 each (A ↓ G) has all limits. By 4.11 each (A ↓ G) as an initial
object. By 3.3 G has a left adjoint.

We have a problem, if D has limits for all diagrams ‘as big as itself’, then it
is a preorder (c.f. example sheet 2 question 4). We call a category complete if it
has all small limits

4.13 Theorem. (General Adjoint Functor Theorem) Let D be locally small and
complete and G : D → C be a functor. Then G has a left adjoint iff G preserves
all small limits and satisfies the ‘solution set condition’: for every A ∈ ob C, there
exists a set of morphisms {fi : A→ GBi : i ∈ I} such that every A→ GB factors

as A
fi−→ GBi

Gh−−→ GB with h : Bi → B in D.

Proof. G preserves limits by 4.9, and {ηA : A→ GFA} is a solution set for A by
3.3.

Each (A ↓ G) is complete by 4.10, and it inherits local smallness from D.
It also satisfies the solution set condition on objects: there is a set of objects
{Ci : i ∈ I} such that for any object C ∈ (A ↓ G), we have an morphism Ci → C
for some i ∈ I. So we need to show that if A is complete, locally small and has a
solution set of objects, then it has an initial object. Let {Ci : i ∈ I} be a solution
set, and form P =

∏
i∈I Ci. Take e : E → P the limit of the diagram P → P

with one edge for each morphism P → P in A. For every object D, we have
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P → Ci → D for some Ci and hence E → P → D. Suppose we have E
g−→−→
f
D,

form their equalizer h : F → E. There exists some k : P → F and ehk is an
endomorphism of P , so ehke = 1P e, e is a monomorphism, so hke = 1E . In
particular, h is epic, so f = g.

4.14 Lemma. Suppose that we are given a pullback square

A
f //

g

��

B

h
��

C
k
// D

with h monic, then g is monic.

Proof. Suppose E
m−→−→
l
A satisfy gl = gm, then hfl = kgl = kgm = hfm, but h

is monic, so fl = fm, so l and m are factorizations of the same cone through a
limit, so l = m.

A subobject of A in a category is a monomorphism A′ → A. We say that a
category is well powered if, for every A ∈ ob C, there exists a set of subobjects
{Ai → A : i ∈ I} such every subobject A′ → A is isomorphic (in C/A) to some
Ai → A. For example Set, Gp and Top are all well powered.

4.15 Theorem. (Special Adjoint Functor Theorem) Suppose C is locally small
and D is locally small, completed, well powered and has a coseparating set of
objects. Then a functor G : D → C has a left adjoint iff G preserves all small
limits.

Proof. The forward implication follows from 4.9.
We first show that each (A ↓ G) is complete, locally small, well powered and

has a coseparating set. Completeness and local smallness as before. For well
poweredness, note that a morphism h : (B′, f ′)→ (B, f) is (A ↓ G) is monic if it
is monic in D by 4.8. So subobjects of (B, f) in (A ↓ G) correspond to subobjects
m : B′ → B such that f uniquely factors through G in GB′ → GB, that is each
subobject in D gives rise to one in (A ↓ G), . So, up to isomorphism, these form
a set. For the coseparating set, let {Si : i ∈ I} be a coseparating set of D. Then
the set {(Si, f) : i ∈ I, f ∈ C(A,GSi)} is a coseparating set for (A ↓ G) since if
we have

A
f //

fi

!!

(Gl)f ′

��

GB

Gh
��
Gk
��

GB′

l

��
GSi
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with h 6= k, there exists some l : B → S with lh 6= lk and l is a morphism
(B′, f ′)→ (Si, (Gl)f

′) in (A ↓ G).
We need to show that if A is complete, locally small, well powered and has a

coseparating set {Si : i ∈ I} of objects, then it has an initial object. First form
P =

∏
i∈I Ai. Let {Pi → P : j ∈ J} be a representative set of subobjects of P ,

and form the limit of
Pi

��... P

Pj

@@

whose edges are all the Pi → P for j ∈ J . If L is the summit of the limit cone,
then L→ P is monic by the argument of 4.14 and it is the smallest subobject of
P , since it factors through every Pj → P . We claim that L is an initial object of

A. Suppose we had two morphisms L
g−→−→
f
A, then we could form their equalizer

E → L, but E → L → P is monic, so L → P factors through it and hence 1L
factors through E → L, so E → L is epic and f = g.

For existence given A ∈ obA, consider K = {(i, f) : i ∈ I, f : A → Si} and
form Q =

∏
(i,f)∈K Si. We have a canonical map h : A→ Q defined by π(i,f)h = f

and h is monic since the Si form a coseparating family. We also have k : P → Q
defined by π(i,f)k = πi. Form the following pullback

B
m //

l
��

P

k

��A
n
//

then m is monic by 4.14, so L → P factors through it. So we have a morphism

L→ B
l−→ A.

4.16 Examples.

(a) If we did not know how to construct free groups, we could use the GAFT
to construct a left adjoint for U : Gp → Set. We already know that Gp
has and U preserves all small limits (4.7a). So all we need to verify is the

solution set condition. Given a set A, any function A
f−→ UG factors through

A → UG′ → UG, where G′ is the subgroup generated by {f(a) : a ∈ A}.
If |A| = κ, then |G′| = ℵ0κ, so if we take a set of this size and equip all
subsets of it with all possible group structures, plus all possible maps from
A, we obtain a solution set.
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(b) Consider the category CLat of complete latices and U : CLat → Set the
forgetful functor. Just as for groups CLat has a U preserves all small limits
and CLat is locally small. However AW Hales showed that, for any cardinal
κ, there exists a 3-generator complete lattice of size κ. So the solution set
fails for A = {1, 2, 3} and U does not have a left adjoint.

(c) Consider the inclusion I : kHaus→ Top. kHaus has small products and F
preserves them (Tychonoff). It has equalizers because, given a pair of maps

X
g−→−→
f
Y , with Y haussdorf, their equalizer is a closed subspace of X and

hence compact if X is. kHaus and Top are locally small. kHaus is well-
powered since the subobjects of X are all isomorphic to closed subspaces of
X. By Uryson’s lemma, the closed unit interval [0, 1] is a coseparater for
kHaus. So by 4.15, I has a left adjoint β, the Stone-Čech compactification
functor. Čech’s original (1937) construction of βx was as follows: form
P =

∏
f :X→[0,1][0, 1] and then form the closed of the image of the canonical

map X → P (It may be noted that this inspired the proof of the SAFT
and possibly the conditions as well).

5 Monads

Suppose that we are given an adjunction C
G←−−→
F
D F a G. What is the ‘trace’

of this adjunction on the category C? We have the functor T = GF : C → C
equipped with natural transformations η : 1C → T and µ = GεF : TT → T . From
the triangular identities we get the triangles

T
Tη //

1T !!

TT

µ

��
T

T
ηT //

1T !!

TT

µ

��
T

And from the naturality we get the commutativity of

TTT
Tµ //

µT

��

TT

µ

��
TT

µ
// T

5.1 Definition. By a monad, T = (T, η, µ) we mean a functor T : C → C equipped
with natural transformations η : 1C → T and µ : TT → T satisfying the above

3 diagrams. Any adjunction C
G←−−→
F
D F a G induces a monad (GF, η,GεF ) on C

and a comonad (FG, ε, FηG) on D.

Given a monad M , the functor M × (−) : Set → Set has a monad structure
with unit η : A→M×A sending a to (e, a) and multiplication µA : M×M×A→
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M × A sending (m,n, a) to (mn,A). This monad is induced by an adjunction,

Set
G←−−→
F

M -Set where M -Set is the category of sets with an M action, G is the

forgetful functor and FA = M ×A (with M action my multiplication on the left
factor).

5.2 Definition. Let T = (T, η, µ) be a monad on a category C. By a T algebra,
we mean a pair (A,α) where A ∈ ob C and α : TA→ A satisfies

A
η

A
//

1A !!

TA

α

��
A

TTA
Tα //

µA

��

TA

α

��
TA

α
// A

A morphism f : (A,α) → (B, β) of T algebras is a morphism f : A → B such
that

TA
Tf //

α

��

TB

β

��
A

f
// B

commutes. We write CT for the category of T algebras and homomorphisms
between them, this is also called the Eilenberg-Moore category of T. There is an
obvious forgetful functor GT : CT → C, sending (A,α) to α and f to f .

5.3 Lemma. GT has a left adjoint FT and the monad induced by (FT a GT) is
T.

Proof. We define FTA = (TA, µA), this is a T algebra by the two diagrams in
the definition of T. If f : A → B, we take FTf = Tf : (TA, µA) → (TB, µB),
this is a homomorphism by the naturality of µ. To verify FT a GT, we construct
the unit and counit of the adjunction. GTFT = T , so we take η : 1 → T as the
unit. We define ε(A,α) = α, the associativity condition says that this a homomor-

phism FTGT(A,α) → (A,α) and naturality follows from the conditions on the
morphisms of T algebras. The identity

GT(A,α)
ηA //

1 ''

GTFTGT(A,α)

GTα
��

GT(A,α)

is the unit condition on α for T algebras. The identity

FA
FηA //

1 $$

FGFA

ηFA

��
FA
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is the diagram

TA
TηA //

1 ##

TTA

µA

��
TA

which is included in the definition of monad.

Note that if C
G−→←−
F
D is an adjunction inducing T, we could replace D by the

full subcategory D′ on objects of the form FA. So in trying to construct D we
may assume F is surjective. Also morphisms FA → FB in D correspond to
morphisms A→ GFB = TB in C.

5.4 Definition. Let T = (T, η, µ) be a monad on C. The Kleisli category, CT is
defined by ob CT = ob C. Morphisms A→→→ B in CT are morphisms A→ TB in C.
The composite of A

f−→f−→f−→ B
g−→g−→g−→ C is

A
f−→ TB

Tg−−→ TTC
µC−−→ TC,

with the identity morphism A→→→ A as A→ TA. To verify associativity, suppose
that we are given

A
f−→f−→f−→ B

g−→g−→g−→ C
h−→h−→h−→ D,

then the composite

h(gf)h(gf)h(gf)

=A
f−→ TB

Tg−−→ TTC
µC−−→ TC

Th−−→ TTD
µD−−→ TD

=A
f−→ TB

Tg−−→ TTC
TTh−−−→ TTTD

µTD−−−→ TTD
µD−−→ TD

=A
f−→ TB

Tg−−→ TTC
TTh−−−→ TTTD

TµD−−−→ TTD
µD−−→ TD

=A
f−→ TB

T (hghghg)−−−−→ TTD
µD−−→ TD

=(hg)f(hg)f(hg)f

For the unit law,

A
ηA−−→ηA−−→ηA−−→ A

f−→f−→f−→ B

=A
ηA−−→ TA

Tf−−→ TTB
µB−−→ TB

=A
f−→ TB

ηTB−−−→ TTB
µB−−→ TB

=A
f−→ TB

=A
f−→f−→f−→ B

The other identity is easier.
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5.5 Lemma. There is an adjunction C
GT←−−−−→
FT

CT, FT a GT inducing the monad T.

Proof. We define FTA = A and FT(A
f−→ B) = A

f−→ B
ηB−−→ TB. To verify that

FT is a functor, suppose that we are given A
f−→ B

g−→ C in C. Then (FTg)(FTf)(FTg)(FTf)(FTg)(FTf)
is the composite

A
f−→ B

ηB−−→ TB
Tg−−→ TC

TηC−−−→ TTC
µC−−→ TC = A

f−→ B
g−→ C

ηC−−→ TC = FT(gf)

We define GTA = TA, and GT(A
f−→f−→f−→ B) = TA

Tf−−→ TTB
µB−−→ TB. We need to

verify that GT is a functor: First, the identities functions GT(ηA) = µATηA =
1TA, then

GT(A
f−→f−→f−→ B

g−→g−→g−→ C)

=TA
Tf−−→ TTB

TTg−−−→ TTTC
TµC−−−→ TTC

µC−−→ TC

=TA
Tf−−→ TTB

TTg−−−→ TTTC
µTC−−−→ TTC

µC−−→ TC

=TA
Tf−−→ TTB

µB−−→ TB
Tg−−→ TTC

µC−−→ TC

=(GTg)(GTf)(GTg)(GTf)(GTg)(GTf)

Note that GTFT(A
f−→ B) = TA

Tf−−→ TB, so we take the unit of the adjunction

to be η : 1C → T = GTFT. FTGTA = TA, so we let the counit TA
εA−→εA−→εA−→ A be

TA
1TA−−→ TA. To verify the naturality of the counit consider:

FTGTA
FTGTf //

εA

��

FTGTB

εB

��
A

f
// B

The top composition is

=TA
Tf−−→ TTB

µB−−→ TB
ηTB−−−→ TTB

T1TB−−−−→ TTBµBTB

=TA
Tf−−→ TTB

µB−−→ TB
ηTB−−−→ TTBµBTB

=TA
Tf−−→ TTB

µB−−→ TB

The bottom composition is

TA
1TA−−→ TA

Tf−−→ TTB
µB−−→ TB = TA

Tf−−→ TTB
µB−−→ TB

so the square commutes. Finally we need to verify the triangular identities:

FTA
FTηA//

1FTA %%

FTGTFTA

εFTA

��
FTA
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is
A

ηA−−→ TA
ηTA−−−→ TTA

1TTA−−−→ TTA
µA−−→ TA = A

ηA−−→ TA = 1FTA1FTA1FTA

The other triangular identity is

GTA
ηGTA//

1GTA %%

GTFTGTA

GTεA

��
GTA

but this is just

TA
ηTA //

1TA ##

TTA

µA

��
TA

which commutes by definition of a monad.

Given a monad T on C, let Adj(T) denote the category whose objects are

adjunctions C
G←−−→
F
D with F a G inducing T and whose morphisms are functors

D
G

��

K // D′

G′��
C

F

__
F ′

??

such that KF = F ′ and G′K = G.

5.6 Theorem. The Kleisli adjunction C
GT←−−−−→
FT

CT is initial in Adj(T) and the

Eilenburg-Moore adjunction is terminal.

Proof. Let C
G←−−→
F
D be an arbitrary object of Adj(T). Let ε be the counit of

F a G. We define K : D → CT by KB = (GB,GεB). Note that

GB
ηGB //

##

TGB

GεB
��

GB

commutes and

TTGB
GεFGB=µGB//

GFGεB
��

TGB

GεB
��

TGB
GεB

// GB
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commute by naturality of ε. We let K(B
g−→ B′) = Gg′ (which is an algebra ho-

momorphism since ε is natural). Clearly GTK = G and KFA = (GFA,GεFA) =

(TA, µA) = FTA with KF (A
f−→ A′) = GFf = Tf = FTf .

If K ′ : D → CT satisfies GTK ′ = G and K ′F = FT, then necessarily K ′B =
(GB, βB) and K ′g = Gg for some β : GFG → G. Moreover, βFA = µA = GεFA
for all A ∈ ob C. For any B we have εB : FGB → B in D yielding

GFGFGB
GFGεB //

µGB=GεFGB

��

GFGB

βB

��
GFGB

GεB

// GB

but this diagram would commute if βB was replaced by GεB , but GFGεB is split
epic, so βB = GεB .

Now for the Kleisli category. Define L : CT → D by LA = FA, L(A
f−→f−→f−→ A′) =

FA
Ff−−→ FGFA′

εFA′−−−→ FA′. Check that L is a functor. LFT(A
f−→ A′) = FA

Ff−−→
FA′

FηA′−−−→ FGFA′
εFA′−−−→ FA′ = Ff , GLA = GFA = TA = GTA, GL(A

f−→f−→f−→

A′) = GFA
GFf−−−→ GFGFA′

GεFA′−−−−→ GFA′ = TA
Tf−−→ TTA′

µ′A−−→ TA′ = GTf
(proof of uniqueness left out).

5.7 Theorem. Let T be a monad on C. Then

(i) GT : CTT → C create limits of all shapes with exist in C.

(ii) GT creates colimits of shape J iff T preserves them.

Proof. (i) Suppose D : J → CT is a diagram and GTD has a limit (L
λi−→ GTD(j) :

j ob J) in C. Write D(j) as (GTD(j), δj). Then the Tλj forms a cone over TGTD
and the δj form a natural transformation TGTD → GTD since the D(f : i → j)

are T algebra morphisms. Thus the composites TL
Tλj−−→ TGTD(j)

δj−→ GTD(j)
form a cone overGTD. Hence we get a unique θ : TL→ L such that λjθ = δj(Tλj)
for each j. We claim that (L, θ) is a T-algebra. To verify, we need to show that
two diagrams commute. We need to show that θ ◦ (Tθ) = θ ◦ µL. First compose
each with λj , then we get

λj ◦ θ ◦ (Tθ) = δj ◦ (Tλj) ◦ (Tθ) = δj ◦ T (δj ◦ (Tλj)) = δj ◦ (Tδj) ◦ (TTλj)

λj ◦ θ ◦ µL = δj ◦ (Tλj) ◦ µL = δj ◦ µGTD(j) ◦ (TT (λj))

But D(j) = (GT, δj) is an algebra, so δj ◦ (Tδj) = δj ◦ µGTD(j), thus the two

compositions are the same cone over GTD, so their factorization through the
limit is the same, that is θ ◦ (Tθ) = θ ◦ µL. For the other diagram, we must show
that θ ◦ ηL = 1L, so we apply the same argument:

λj ◦ θ ◦ ηL = δj ◦ (Tλj) ◦ ηL = δj ◦ ηGTD(j) ◦ λj
1L ◦ λj
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As above D(j) is an algebra, so δj ◦ ηGTD(j) = 1L, so these are factorizations of
the same cone through the limit, hence θ ◦ ηL = 1L.

It is clear that ((L, θ)
λi−→ D(i)) is a cone, since we have λjθ = δj(Tλj) the

morphism condition for T-algebras. Finally we claim that (L, θ) is actually a limit

for D(j) in CT. Given a cone (M
µj−→ D(j) : j ∈ ob J) in CT, we get a unique

factorization µj = λjϕ viewing the cone over C. All we need to show is that ϕ is
a T algebra homomorphism, that is θ ◦ (Tϕ) = ϕ ◦ β, we start by composing with
λj :

λj ◦ θ ◦ (Tϕ) = δj ◦ (Tλj) ◦ (Tϕ) = δj ◦ (Tµj)

λj ◦ ϕ ◦ β = µj ◦ β

But µj is a T algebra homomorphism, so these two are equal. Thus they are a
factorization of the same cone through a limit, and ϕ is a T-algebra homomor-
phism.

(ii) The reverse implication is essentially a dual copy of the previous argument,
but we use the fact that if L is the summit of a colimit cone, then so are TL
and TTL. For the forward implication, if GT creates colimits of shape J , then
T = GTFT preserves them since FT preserves all colimits that exist.

5.8 Definition. We sat an adjunction C
G←−−→
F
D F a G is monadic if the comparison

functor K : D → CT where T is the monad induced by F a G is part of an
equivalence. We also say G : D → C is monadic if it has a left adjoint and the
adjunction is monadic.

Given an adjunction F a G for any object B of D, we have a diagram

FGFGB
εFGB−−−−→−−−−→
FGεB

FGB
εB−−→ B

called the standard free presentation of B. The monadicity theorems all use
the idea that CT is characterized in Adj(T) by the fact that this diagram is a
coequilizer for any B.

5.9 Definition. We say a parallel pair A
g−→−→
f
B is reflexive if there exists B

r−→ A

such that fr = gr = 1B . By a reflexive coequalizer we mean a coequalizer of a
reflective pair. We say a diagram

A
f,g //// B
t

oo
h //

C
s

oo

is a split coequalizer diagram if it satisfies hf = hg, hs = 1C , gt = 1b and ft = sh.

Note that if these hold, then h is indeed a coequalizer of f and g: if B
k−→ D,

satisfies kf = kg, then k = kgt = kft = ksh, so k factors through h and the
factorization is unique since h is split epic. Note that split equilizers are then
preserved by any functor.

33



Given G : D → C we say that A
g−→−→
f
B is G-split if GA

Gg−−→−−→
Gf

GB is part of a split

coequalizer diagram. Note that the standard free presentation FGFGB
εFGB−−−−→−−−−→
FGεB

FGB is reflexive with common splitting FηGB and is also G-split since

GFGFGB
Gf,Gg // // GFB
ηGFGB

oo
GεB //

GB
ηGB

oo

is a split coequalizer diagram.

5.10 Theorem. (Perfect Monadicity Theorem) Let G : C → C be a functor. Then
G is monadic if:

(i) G has a left adjoint

(ii) G creates coequalizers of G-split pairs

5.11 Theorem. (Crude Monadicity Theorem) Let G : D → C be a functor and
suppose:

(i) G has a left adjoint

(ii) G reflects isomorphisms

(iii) G preserves and D has coequalizers of reflective pairs

then G is monadic.

Proof. Proof of 5.10, forward direction follows from 5.7ii. Since T must preserve
split coequalizers, so GT : CT → D creates GT-split coequalizers (see proof of
Beck’s Theorem in Saunders-Maclean). But what does this tell us about G? Note

that G = GTK, so if a pair A
g−→−→
f
B is a G-split coequalizer, then it is GTK-split

coequalizer. Thus there is an coequalizer for the pair GTKA ⇒ GTKB
e−→ C,

but GT creates such colimits, so there exists a C ′, e′ : KB → C ′ such that

KA ⇒ KB
e′−→ C ′ is a coequalizer. Now, K is full, faithful and essentially

surjective, so there exists some C ′′ such that KC ′′ ∼= C ′ and an e′′ the composition

of e′ and the isomorphism. Thus this is a colimit for the pair A
g−→−→
f
B, since we

can push any other cone down via K and pull the factorization back up since K
is full.

Proof of 5.11 and 5.10 reverse direction. We have K : D → CT with T the
monad induced by the adjunction F a G. Define L : CT → D by setting L(A,α)

to be the coequilizer of FGFA
εFA−−→−−→
Fα

FA (note that this is reflexive, since FηA

is a common splitting and is G split since GFGFA
GεFA−−−−→−−−−→
GFα

GFA → A with
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ηGFA : GFA → GFGFA and ηA : A → GFA as a split coequalizer). On
morphisms L is defined such that

FGFA
//
//

FGFf

��

FA //

Ff

��

L(A,α)

Lf

��
FGFB

//
// FB // L(B, β)

commutes. This is clearly functorial.

KFGFA
GFα //

µA

// KFA

%%

α // (A,α)

��
KL(A,α)

is a GT-split coequalizer diagram. So we get a unique factorization (A,α) →
KL(A,α) which is natural in A.

KB = (GB,GεB), so we have a coequalizer diagram

FGFGB
FGεB //

εFGB

// FGB //

εB
$$

LKB

��
B

hence we get a unique factorization LKB → B that is natural in B. The unit
(A,α) → KL(A,α) maps to an isomorphism A → GL(A,α) in C provided G
preserves the coequalizer defining L. But GT reflects isomorphisms, so it must be
an isomorphism in CT. Similarly LKB → B maps to an isomorphism in C, so if
G reflects isomorphisms, or if G creases the coequalizer of FGFGB ⇒ FGB then
LKB → B must be an isomorphism.

5.12 Examples.

(a) For any category of algebras (in the universal algebra sense), e.g. Rng,
Gp, etc... the forgetful functor to Set is monadic. The left adjoint exists
(free groups, etc...) and the functor reflects isomorphisms, we know that

if A1

g1−→−→
f1

B1
h−→ C1 and A2

g2−→−→
f2

B2
h2−→ C2 are coequalizers in Set then

A1 × A2

(g1,g2)−−−−→−−−−→
(f1,f2)

B1 × B2
(h1,h2)−−−−→ C1 × C2 is a coequalizer. Note that two

elements of Bi are identified in Ci if we can link them by a chain where each

adjoint pair is in the image of either Ai
(fi,gi)−−−−→ Bi×Bi or Ai

(gi,fi)−−−−→ Bi×Bi.
So if we have strings b1,1, ..., b1,2 and b2,1, ..., b2,2 we can link (b1,1, b2,1) to

(b1,2, b2,2) since both pairs are reflective. Hence if A
g−→−→
f
B

h−→ C is a reflective
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coequalizer in Set, so is An ⇒ Bn → Cn for any finite n. A and B have
have an n-ary operation and f, g are homomorphisms for it, we get a unique
Cn → C making h a homomorphism. This shows that U : A → Set creates
and reflects coequalizers.

(b) Any reflection is monadic. Direct proof in question 3 example sheet 3 but

it ca be proved using 5.10: Suppose C
G←−−→
F
D is reflection, identify D with

a full subcategory of C. If A
g−→−→
f
B is a G-split pair in D, we have a split

coequalizer diagram

A
f,g //// B
t

oo
h //

C
s

oo

in C since G is the inclusion of D in C. We know that sh : B → B is in D

since G is full and faithful. Note that s : C → B is an equalizer of B
1B−−→−−→
sh

B

since shs = s1C = s = 1Bs, but we claim that if D is reflective in C, then it
is closed under limits in C:
Suppose that we have a D : J → D, then GD is a diagram in C. Suppose

that it has a limit cone in C, that is (L
λj−→ GD(j) : j ∈ ob J). Suppose that

we have any cone (M
µj−→ D(j) : j ∈ ob J) in D, then applying G gives us

a cone over GD in C, so it factors through the limit L via Gµj = λjϕ in C.
Then by naturality of ε the following commutes:

M

µj

��

µi

��

ε−1
M

��
FGM

FGµj

��

FGµi

��

Fϕ

��
FL

Fλjyy Fλi %%
FGD(j)

FGDf //

εD(j)zz

FGD(i)

εD(i) $$
D(j)

Df // D(i)

in D. Thus FL is a limit cone over D(j) in D.

(c) Consider the composite adjunction Set
U←−−→
F

AbGp
I←−−→
L

tfAbGp. Each factor

is monadic by 5.12a and 5.12b, but the composite is not, since free abelian
groups are torsion free and so the monad on Set is induced by (LF a UI)
is isomorphic to that induced by (F a U). In general, given an adjunction
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C
G←−−→
F
D where D has reflexive coequalizers, we can form the ‘monadic tower’

where T is the monad induced by (F a G) and L is the left adjoint to the
comparision functor K.

D //

G

��

K

''

(CT)S

||

oo

CT
L

gg <<

GT
��C

F

WW

F T
??

S is the monad induced by L a K and so on. We say F a G has monadic
length n if this produced an equivalence after n steps. So Set � tfAbGp
has monadic length ∞.

(d) Consider the adjunction Set
U←−−→
D

Top where D is the discretization func-

tor. The monad induced by this adjunction is (1Set, 1, 1) so its category of
algebras is isomorphic to Set, hence the adjunction has monadic length ∞.

(e) Consider the composite adjunction Set
U←−−→
D

Top
I←−−→
β

kHaus. This is monadic,

E Manes gave a direct proof, we will use 5.10. We need to show that UI

creates coequalizers of UI split pairs. Suppose X
g−→−→
f
Y is a parallel pair in

kHaus, and

X
f,g // // Y
t

oo
h //

Z
s
oo

is a split equalizer diagram in Set. We need to show that there is a unique
compact hausdorf topology on Z such that h is continuous and that it is
then a coequalizer in kHaus. We can think of Z as the quotient Y/R for
a relation to be defined. So if we equip this with the quotient topology, we
get a coequalizer in Top. The quotient in Top is certainly compact since
its the continuous image of a compact set. So it is the only topology making
h continuous which could possibly be hausdorf.

We shall use this fact from topology: If Y is compact hausdorf and R ⊂
Y × Y is an equivalence relation then Y/R is hausdorf iff R is closed in
Y ×Y . Claim: the equivalence relation R generated by {(f(x), g(x) : x ∈ X}
is the set {(g(x1), g(x2) : x1, x2 ∈ X, f(x1) = f(x2)} It is clear that R is
contained in this set. If (y1, y2) ∈ R, then h(y1) = h(y2), so ft(y1) =
sh(y1) = sh(y2) = ft(y2) so yi = g(xi) with xi = t(yi) and f(x1) = f(x2).
The set {(x1, x2)|f(x1) = f(x2)} is closed in X×X, and hence compact, so
its image under g × g is compact in Y × Y and hence closed.

37



6 Abelian Categories

6.1 Definition. Let A be a category equipped with a forgetful functor U : A →
Set. Say a locally small category C is enriched over A if we are given a factor-
ization of C(−,−) : Cop × C → Set through U . If A = Set∗ we sat that C is a
pointed category. If A = CMon, we say that C is semi-additive. If A = AbGp
we say C is abelian.

6.2 Lemma.

(i) If C is pointed, I ∈ ob C, the following are equivalent:

(a) I is initial

(b) I is terminal

(c) 1I = 0 : I → I

(ii) If C is semiadditive, A,B,C ∈ ob C the following are equivalent

(a) There exists π1, π2 making C into a product A×B
(b) There exists ν1, ν2 making C into a coproduct A+B.

(c) There exists morphisms π1 : C → A, π2 : C → B, ν1 : A → C and
ν2 : B → C such that π1ν1 = π2ν2 = 1B, π2ν1 = 0, π1ν2 = 0 and
ν1π1 + ν2π2 = 1C .

Proof. See examples sheet 2

6.3 Lemma. Suppose C is a locally small category with finite products and co-
products such that 0→ 1 is an isomorphism. Given A+B and C ×D, and

f : A→ C h : B → D
k : A→ D g : B → D

we can define a morphism A + B → C ×D by factoring the cocone C ×D with
(f, k) : A → C × D and (h, g) : B → C × D. Now, let f = 1A, g = 1B and
h = k = 0 where 0 is the unique morphism factoring through 0, then we have
ϕ : A + B → A × B. Suppose ϕ is an isomorphism, then C has a unique semi-
additive structure.

Proof. The 0 of the semi-additive structure has to be defined as in the lemma.
We need 0f = f0 = 0 for all f , but this is clear since if f : A → B and
0 : B → C, then 0 = 0C0B where 0B : B → 0, so we must have 0Bf = 0A

so 0f = 0C0Bf = 0C0A = 0 : A → C similarly for f0. Given A
g−→−→
f

B, we

define f +l g to be A
(f,g)−−−→ B × B → B + B → B where the final function is

the factorization of the cocone B under the coproduct. We define f +r g to be

A
(1A,1A)−−−−−→ A × A → A + A → B with the final function the factorization of
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the cocone B with functions f and g through the colimit A + A. We claim that
f +l 0 = f so we need to show that

A
(f,0)//

""

f

..

B ×B // B +B // B

B × 0

OO

##

// B + 0

<<OO

B

;;

1B

JJ

commutes. Given for morphisms f, g, h, k : A→ B, let ϕ be the map they define
from A+A→ B ×B. Then consider

A
(1A,1A)−−−−−→ A×A→ A+A

ϕ−→ B ×B → B +A→ B

=A
(1A,1A)−−−−−→ A×A→ A+A

(f+lh,g+lk)−−−−−−−−→ B

=(f +l h) +r (g +l k)

But evaluating another way, we get (f +l h) +r (g +l k) = (f +r g) +l (h +r k)
hence +r = +l and they are associative and commutative.

For the uniqueness, reacall from 6.2 that if we have any semi-additive structure,

the identity map A×A→ A×A is equal to ν1π1 + ν2π2. So, given A
g−→−→
f
B, the

composite

A
(1,1)−−−→ A×A→ A+A

(f,g)−−−→ B

=A
(1,1)−−−→ A×A ν1π1+ν2π2−−−−−−−→ A×A→ A+A

(f,g)−−−→ B

=A
ν1+ν2−−−−→ A+A

(f,g)−−−→ B

=A
f+g−−−→ B

An object which is both initial and terminal is called a zero object . An object
which is both a product A×B and a coproduct A+B is called a biproduct and
denoted A⊕B. We will feel free to use the matrix of functions f, h, g, k to denote
a morphism A ⊕ B → C ⊕ D for biproducts. Note that composition is matrix
multiplication.

6.4 Corollary. Let C and D be semi-additive categories with finite products.
Then a functor F : C → D preserves finite product iff it preserves addition (i.e.
F (0) = 0 and F (f + g) = Ff + Fg).

Proof. If F preserves +, then it preserves biproducts by 6.2. The converse follows
from 6.3.
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6.5 Definition. Let C be a pointed category. By a kernel of a morphuism A
f−→ B

we mean an equilizer of A
0−→−→
f
B (dually the cokernel). We say a morphism is

normal if it occurs as a kernel. We say A
f−→ B is a pseudo-monomorphism if fg =

0 implies g = 0 (equivalently the kernel of f is 0 : 0→ A). If C is addative, then

every regular monomorphism is normal, since the equalizer A
g−→−→
f
B has the same

universal property as the kernel of A
f+g−−−→ B. And every pseudo-monomorphism

is monic, since fg = fh iff f(g − h) = 0. In Gp every monomorphism is regular,
but a monomorphism H → G is normal if H is a subgroup of G, but every
epimorphism f : G→ K is normal since if f is surjective, then K ∼= G/ ker f . In

Set every monomorphism is normal, since if A
f−→ B is injective, then it is the

kernel of B → B/ ∼ where b1 ∼ b2 iff b1 = b2 or {b1, b2} ⊂ im f . But not every
epimorphism in Set is normal.

6.6 Lemma. Let C be a pointed category with cokernels, then f : A → B is a
normal monomorphism in C iff f = ker coker f .

Proof. The reverse implication is trivial. For the forward implication, suppose
that f = ker(g : B → B), Let q = coker f , then gf = 0 = g0, so g coequalizes
f and 0, hence it factors as hq. Now given k : E → B with qk = 0, we have
gk = hqk = 0 so there is a unique factorization k = fl. Since qf = 0, this implies
f = ker q since f is a now a equalizer of 0 and q.

E

l
��

k

  
A

f
// B

f //

q   

C

D

h

OO

6.7 Lemma. Suppose C is pointed with kernels and cokernels and every monomor-
phism in C is normal. Then every morpism of C factors as a pseudo epimorphism
followed by a monomorphism and the factorization is unique up to isomorphism.

Proof. Given A
f−→ B, let q : B → C be the cokernel of f and let k : D → B

be the kernel of q. We get a factorization f = kg, we claim that g is a pseudo-
epimorphism. Suppose h : D → E satisfies hg = 0, let l = kerh, then kl is monic
so kl = kerm for some m. We can factor g as ln, so f = kg = kln, so mf = 0, so
m = pq for some p. Now qk = 0 since k = ker q so mk = 0, so k factors through
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kl. But k and l are monic, so this forces l to be an isomorphism and hence h = 0.

G

A

n

��

g   

f // B

m

??

q
// C

p
__

D

k

>>

h

  
F

l

>>

E

For uniqueness, suppose f factors as kg where g is pseudo-epimorphic, then
coker f = coker k, so if k is also a monomorphism, then k = ker coker k =
ker coker f by 6.6.

6.8 Definition. An abelian category is an additive category with finite limits
and colimits (equally finite biproducts, kernels and cokernels) in which every
monomorphism and every epimorphism is regular (equivalently normal).

AbGp, ModR, [C,A] where A is abelian. if C is additive and A is abelian,
then the subcategory Add(C,A) ⊂ [C,A] of additive functors C → A is abelian.
Note that ModR = Add(R,AbGp) where we consider a ring R as an additive
category with one object.

In a pointed category with kernels and cokernels, we write =f for ker coker f
and coim f for coker ker f . In an abelian category, and f factors as (im f)g from
the proof of 6.7 and as h(coim f) from the dual of the proof of 6.7, but both of
these are factorings as an epimorphism followed by a monomorphism, so by 6.7
these must be the same. In general, we get a comparison map f̃ such that

A
f //

g

��

B

h
��

C
f̃

// D

and in an abelian category f̃ is an isomorphism. Note that A is abelian iff A is
additive with finite limits, colimits and every f factors as (im f)(coim f). The
forward implication is clear, for the reverse implication, if f is a monomorphism,
coim f = coker ker f = coker(0 → A) = 1A, so f = im f and is normal by 6.6,
similarly for epimorphisms.

6.9 Lemma. Suppose that we are given a pullback square in an abelian category
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with h epic. Then the square is also a pushout and g is epic.

A
f //

g

��

B

h
��

C
k
// D

Proof. Consider A
(f,−g−−−→)B⊕C (h,k)−−−→ D, we have hf−gk = 0 so the composite is

0 and the fact that (f,−g) as the universal property of the pullback implies that
(f,−g) = ker(h, k). But h is epic, so (h, k) is epic thus (h, k) = coker ker(h, k) =
coker(f,−g) by 6.6. Thus the original square is a pushout.

Now consider q = coker g with q : C → E. Then q and 0 : B → E form a cone
under

A
f //

g

��

B

C

so they factor uniquely through D by r : D → E. Then rh = 0, but h is epic, so
r = 0 thus q = rk = 0, so g is epic.

6.10 Definition. We say a sequence of morphisms

...→ A
g−→ B

f−→ C → ...

is exact at B if im g = ker f or equivalently coker g = coim f . We can say that

f : A→ B is monic iff 0→ A
f−→ B is exact. Similarly f is epic iff A

f−→ B → 0 is
exact.

A functor F : A → B between abelian categories is exact iff it preserves
exactness of sequences. We say F is left exact if it preserves exactness of the
form 0 → A → B → C (i.e. it also preserves kernels) and F is right exact if it
preserves the exactness of A → B → C → 0 (i.e. it also preserves cokernels).

By considering the exact sequence 0 → A
(1,0)−−−→ A ⊕ B (0,1)−−−→ B → 0 and 0 →

B
(0,1)−−−→ A⊕B (1,0)−−−→ A→ 0. We see that any left exact functor F must preserve

biproducts: since it is left exact, it preserves the exactness except at the last
nontrivial term. But note that it must carry 0 to 0, so FB → 0 must have kernel
1FB , on the other hand, the last non trivial function is split epic, which F must
also preserve, hence its image is epic and thus has image 1FB . Similar arguments
hold for right exact functors. Hence F is left exact iff F preserves all finite limits.
Also F is exact iff F preserves kernels and cokernels iff F preserves all finite limits
and colimits.
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6.11 Lemma. (Five Lemma) Suppose that we are given a diagram

A1
u1 //

f1

��

A2
u2 //

f2

��

A3
u3 //

f3

��

A4
u4 //

f4

��

A5

f5

��
B1 v1

// B2 v2
// B3 v3

// B4 v4
// B5

with exact rows and f1 is an epimorphism, f2 and f4 are isomorphisms and f5 is
a monomorphism, then f3 is an isomorphism.

Proof.

M
d //

m

00

L
e //

l

��

K

k

��
N

c

OO

n // A1
u1 //

f1

��

A2
u2 //

f2

��

A3
u3 //

f3

��

A4
u4 //

f4

��

A5

f5

��
B1 v1

// B2 v2
// B3 v3

// B4 v4
// B5

First we show that f3 is monic. Let k : K → A3 be the kernel of f3. Now,
f4u3k = v3f3k = 0 and f4 is monic, so u3k = 0. Thus k facts through keru3 =
imu2 that is k = (imu2)z. Hence form the pullback of k and u2 as e and l, note
that it is also the pullback of coimu2 and z since the following diagram commutes

A3 K
koo

z

��
A2

u2

OO

coimu2

// I

imu2

``

so e is epic. Now v2f2l = f3u3l = f3ke = 0, so f2l factors through ker v2 = im v1m
form the pullback of f2l and v1 to get d and m with d epic. Finally, form the
pullback of m and f1, giving n and c and since f1 is epic, so is c. So f2ldc =
v1mc = v1f1n = f2u1n, f2 is epic so ldc = u1n, now kedc = u2ldc = u2u1n = 0,
but edc is epic, so k = 0, hence f is monic, dually f is epic, and these are both
regular, so f is an isomorphism.

6.12 Lemma. Snake Lemma (see handout)

6.13 Definition. By a complex in an abelian category A we mean a sequence of
objects

...→ Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 → ...

of objects and morphisms such that dndn+1 = 0 for all n. Nogte that this is
just an additive functor Z → A where Z = Z, Z(n, n) = Z(n, n + 1) = Z and
Z(n,m) = 0 for m 6= n, n + 1. Here the complexes in A are the objects of an
abelian category cA = Add(Z,A). Given a complex C· we define Zn → Cn to be
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the kernel of dn, Bn → CN to be the image of dn+1 and Zn → Hn the cokernel of
Bn → Zn. Equivalently we could form Cn → An as the cokernel of dn+1 and then
Zn → Hn → An is the image factorization of Zn → Cn → An. Each of C· → Zn,
C· → Bn, C· → An and C· → Hn defines an additive functor cA → A. Note that
Hn = 0 iff C· is exact at Cn.

6.14 Theorem. (Mayer-Vietoris) Suppose that we are given an exact sequence
0→ C ′· → C· → C ′′· → 0 in cA, then there is an exact sequence

...→ H ′n → Hn → H ′′n → H ′n−1 → Hn−1 → H ′′n−1 → ...

of homology objects in A.

Proof. First consider

0

��

0

��

0

��
Z ′n

��

// Zn

��

// Z ′′n

��
C ′n

��

// Cn

��

// C ′′n

��

// 0

0 // C ′n−1

��

// Cn−1

��

// C ′′n−1

��
A′n−1

��

// An−1

��

// Z ′′n−1

��
0 0 0

By 6.12 the rows Z ′n → Zn → Z ′′n and A′n−1 → An−1 → A′′n−1 are exact. More-
over, Z ′n → Zn is monic, since Z ′n → Zn → Cn = Z ′n → C ′n → Cn is monic.
Similarly, An−1 → A′′n−1 is epic. Now consider

· · · // Cn+1

##

// Cn

  

// · · ·

Zn+1

;;

// An+1
// Zn

>>

// An
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is exact since Hn+1 → An+1 = im(Zn+1 → An+1) = ker(An+1 → Zn).

0

��

0

��

0

��
H ′n

��

// Hn

��

// H ′′n

��

//

A′n

��

// An

��

// A′′n

��

// 0

0 // Z ′n−1

��

// Zn−1

��

// Z ′′n−1

��
H ′n−1

��

// Hn−1

��

// H ′′n−1

��
0 0 0

By 6.12 we get a morphism H ′′n → H ′n−1 making the sequence

H ′n → Hn → H ′′n → H ′n−1 → Hn−1 → H ′′n−1

exact.

7 Monoidal Categories and Closed Categories

7.1 Examples. We frequently encounter instances of a category C with a functor
⊗ : C × C → C and an object I ∈ ob C which makes C into a monoid with ⊗ = ×
and I = 1.

(a) Any category with finite product taking ⊗ = × and I = 1. We know that
A × (B × C) ∼= (A × B) × C and 1 × A ∼= A ∼= A × 1 since they are limits
of the same diagram. Similarly, any category with finite coproducts with
⊗ = + and I = 0.

(b) In AbGp we have the usual tensor product ⊗ with I = Z. In ModR we
can do the same when R is commutative.

(c) For any C we have a monoidal structure on [C, C] where ⊗ is composition of
functors with I = 1C .

(d) Consider the category ∆ with ob ∆ = N, with maps n→ m order preserving
maps from {0, ..., n− 1} to {0, ...,m− 1} with the operation being addition.
Although n+m = m+ n, this is not a natural isomorphism.
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7.2 Definition. By a monoidal structure on a category C, we mean a functor
⊗ : C × C → C and an object I equipped with natural isomorphisms αA,B,C :
A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C, λA : I ⊗ A → A and ρA : A ⊗ I → A such that
‘all diagrams consisting of α, η and ρ commute’. In particular, we ask that the
following diagrams commute:

A⊗ (B ⊗ (C ⊗D))
αA,B,C⊗D //

1A⊗αB,C,D

��

(A⊗B)⊗ (C ⊗D)

αA⊗B,C,D

��
A⊗ ((B ⊗ C)⊗D)

αA,B⊗C,D ))

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D
αA,B,C⊗1D
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and

A⊗ (I ⊗B)
αA,I,B //

1A⊗λB &&

(A⊗ I)⊗B

ρA⊗1Bxx
A⊗B

Note that for (AbGp,⊗,Z), the usual α : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C sends a
generator a⊗ (b⊗ c) to (a⊗ b)⊗ c. But we also have an isomorphism ᾱ sending
a⊗ (b⊗ c) to −(a⊗ b)⊗ c, but ᾱ does not satisfy the previous conditions.

7.3 Theorem. (Coherence Theorem for Monoidal Categories) If the two dia-
grams above commute, then ‘everything’ does. More formally, we define the set
of words in ⊗ and I as follows: we have a stock of variables A,B,C, ... which are
words, I is a word and if U and V are words, so is (U ⊗V ). If U, V,W are words,
then αU,V,W : (U ⊗ (V ⊗W )) → ((U ⊗ V ) ⊗W ) is an instance of α (similarly
for λ and ρ). If θ is an istance of α, λ, ρ, so are 1A ⊗ θ and θ ⊗ 1A. The body of
a word is the sequence of variables. The theorem then says: given two words W
and W ′ with the same body, there exists a unique morphism from W →W ′ which
is obtained by composing instances and there inverses.

Proof. Note that a word involving n variables defines a functor Cn → C and each
α, λ or ρ defines a natural isomorphism between two such functors. We define
a reduction step to be an instance of α, λ or ρ (as opposed to their inverses).
Define the height of a word w, h(w), to be a(w) + i(w) where i(w) is the number
of occurrences of I and a(w) is the number of instances of ⊗ occurring before a (.

Note that if θ : w → w′ is an instance of α, then i(w) = i(w′) and a(w) > a(w′).
If θ is an instance of λ or ρ, then i(w) > i(w′) and a(w) ≥ a(w′). Thus any
sequence of reduction steps must terminate at a reduced word, from which no
further reductions are possible. Clearly words of height 0, that is those of the
form ((...(A1⊗A2)⊗A3...)⊗An), and the word I of height 1 are reduced. These
are the only reduced words: since if i(w) > 0 and w 6= I, then w has a subword
I ⊗ u or u ⊗ I, to which we can apply either λ or ρ. If a(w) > 0, then there is
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a substring ⊗( and hence a subword (u⊗ (v ⊗ z)) to which we can apply α. For
any w, any reduction path from w must lead to the reduced word with the same
body, since we don not add or remove variables.

To show that any two reduction paths are equal as natural transformations, it

suffices to prove that any pair of reductions w′
ϕ←− w θ−→ w′′ can be embedded in a

commutative polygon, if so we can fill out the diagram of the two reduction paths
with smaller polygons that are commutative, hence making the exterior polygon
commutative. We consider the following cases:

1. ϕ and θ operate on disjoint subwords. That is w = (u⊗v) and θ = (θ′⊗1v)
and ϕ = (1u⊗ϕ′), then the following diagram commutes by the functoriality
of ⊗

(u⊗ v)

θ′⊗1

yy

1⊗ϕ′

%%
(u′ ⊗ v)

1⊗ϕ′ %%

(u⊗ v′)

θ′⊗1yy
(u′ ⊗ v′)

2. ϕ operates within one argument of θ. I.e. θ = αu,v,z and ϕ = 1 ⊗ (ϕ′ ⊗ 1)
where ϕ′ : v → v′. Then we have

(u⊗ (v ⊗ z))
α

vv

1⊗(ϕ′⊗1)

((
((u⊗ v)⊗ z)

(1⊗ϕ′)⊗1 ((

(u⊗ (v′ ⊗ z))

α
vv

((u⊗ v′)⊗ z)

3. ϕ and θ interfere with each other. If θ and ϕ are both instances of α, w must
contain (u⊗ (v ⊗ (x⊗ y))) and θ, ϕ are αu,v,x⊗y and 1⊗ αv,x,y and we use
the pentagonal diagram to get our commutative polygon. If θ is an α and
ϕ is a λ, then either w contains u⊗ (I ⊗ v) and θ = αu,I,v and ϕ = 1⊗ λv
and we use the triangular diagram to get out commutative polygon. Or, w
contains a subword I ⊗ (u× v), θ = αI,u,v and ϕ = λu⊗v. For this we need
to know that the following diagram commutes:

I ⊗ (u⊗ v)
α //

λu⊕v &&

(I ⊗ u)⊗ v

λu⊗1xx
u⊗ v
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If θ is α and ϕ is ρ then w contains u⊗ (v ⊗ I), θ = αu,v,I and ϕ = 1⊗ ρv.
So we need to know that

u⊗ (v ⊗ I)
α //

1⊗ρv &&

(u⊗ v)⊗ I

ρu⊗v
xx

u⊗ v

commutes. If θ is a λ and ϕ is a ρ then w contains I ⊗ I, and θ an instance
of λI and ϕ is an instance of ρI , so we need to know that λI = ρI .

Finally, given two words w and w′ and a morphism ϕ : w → w′, which is a
composite of reductions and their inverses we can form

w //

θw
**

w1

θw1

((

w2

θw2

!!

oo w3

θw3

��

oo // w4

θw4}}

// · · · // w′

θw′
tt

w0

where θw is the reduction from w to the reduced word w0, this commutes by the
uniqueness of reductions, so ϕ = (θw′)

−1(θw) and is unique.

7.4 Definition. Let (C,⊗, I, α, λ, ρ) be a monoidal category. By a symmetry for
⊗, we mean a natural transformation γA,B : A⊗B → B ⊗A satisfying

A⊗ (B ⊗ C)
αA,B,C//

1A⊗γB,C

��

(A⊗B)⊗ C

γA⊗B,C

��
A⊗ (C ⊗B)

αA,C,B

��

C ⊗ (A⊗B)

αC,A,B

��
(A⊗ C)⊗B

γA,C⊗1
// (C ⊗A)⊗B

and

I ⊗A
γI,A //

λA ""

A⊗ I

ρA
||

A

and

A⊗B
γA,B //

1A⊗B %%

B ⊗A

γB,Ayy
A⊗B

There is a coherence theorem for symmetric monoidal categories similar to 7.3
(but more delicate: note that γA,A 6= 1A⊗A in general, although it is true for
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A = I). A given monoidal category may have more then one symmtery. If
C = AbGpZ with (A· ⊗ B·)n =

⊕
p+q=nAp ⊗ Bq and In defined as Z for n = 0

and 0 otherwise. We could define γA,B to be the map a⊗ b 7→ b⊗ a or we could
take a ⊗ b 7→ (−1)pqb ⊗ a where a ∈ Ap and b ∈ Bq. Both of these satisfy the
digrams in 7.4

7.5 Definition. Let C, D be monoidal categories and F : C → D be a functor.
By a (lax) monoidal structure on F we mean a natural transformation θA,B :
FA ⊗ FB → F (A ⊗ B) and a morphism ι : I → FI such that the following
diagrams commute:

FA⊗ (FB ⊗ FC)
1⊗θB,C //

αFA,FB,FC

��

FA⊗ F (B ⊗ C)
θA,B⊗C// F (A⊗ (B ⊗ C))

FαA,B,C

��
(FA⊗ FB)⊗ FC

θA⊗B⊗1
// F (A⊗B)⊗ C

θA⊗B,C

// F ((A⊗B)⊗ C)

I ⊗ FA ι⊗1 //

λFA

��

FI ⊗ FA

θI⊗A

��
FA

FλA

// F (I ⊗A)

and similarly for ρ. If the monoidal structures are symmetric, we say (θ, ι) is a
symmetric monoidal structure if

FA⊗ FB
θA,B //

γFA,FB

��

F (A⊗B)

FγA,B

��
FB ⊗ FA

γA,B

// F (B ⊗A)

commutes. We say the monoidal structure is strong if θ and ι are isomorphisms.
Given monoidal functors (F, θ, ι) and (G, γ, κ), we say a natural transformation

β : F → G is monoidal is

FA⊗ FB
θA,B //

βA⊗βB

��

F (A⊗B)

βA⊗B

��
GA⊗GB

γA,B

// G(A⊗B)

commutes.

7.6 Examples.

(a) Let R be a commutative ring. The forgetful functor (ModR,⊗R, R) →
(AbGp,⊗,Z) is lax monoidal. If A and B are R-modules, we have a quo-
tient map A⊗B → A⊗R B and ι : Z → R by n 7→ n1R.
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(b) The functor (AbGp⊗,Z) → (Set,×, 1) is lax monoidal. We take the uni-
versal map A×B → A⊗B for θ and ι : 1→ Z picking out 1.

(c) The functor AbGp→ModR which sends A to R⊗ A is strong monoidal:
we have a canonical isomorphism R ⊗ Z ∼= R and (R ⊗ A) ⊗R (R ⊗ B) ∼=
R⊗ (A⊗R R)⊗B ∼= R⊗ (A⊗B). In general given a monoidal adjunction
(one whose unit and counit are monoidal natural transformations), between
lax monoidal functors, the left adjoint is always strong. We get an inverse
for FA⊗ FB → F (A⊗B) from the composite

F (A⊗B)
F (ηA⊗ηB)−−−−−−−→ F (GFA⊗GFB)→ FG(FA⊗FB)

ηFA⊗FB−−−−−→ FA⊗FB

(d) If (C,×, 1) and (D,×, 1) are cartesian monoidal categories, then F : C → D
is strong monoidal iff F preserves finite products.

FA× FB //

��

F (A×B)

��
FA× F1 // F (A× 1)

��
FA× 1

OO

// FA

shows that θ commutes with projections.

(e) any functor betwen cocartesian categories has a unique lax monoidal struc-
ture and this structure is strong iff F preserves coproducts.

7.7 Definition. Let (C,⊗, I) be a monoidal category. By a monoid in C we mean
an object A equipped with morphisms m : A ⊗ A → A and e : I → A such that
the following diagrams commute:

A⊗ (A⊗A)
1⊗m //

αA,A,A

��

A⊗A

m

��

(A⊗A)⊗A

m⊗1

��
A⊗A

m
// A

I ⊗A e⊗1 //

λA $$

A⊗A

m

��

A⊗A1⊗eoo

ρA
yy

A
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If ⊗ is symmetric, we say (A,m, e) is a commutative monoid if

A⊗A
γA,A //

m
""

A×A

m
||

A

also commutes.

7.8 Examples.

(a) In (Set,×, 1) monoids are just monoids in the usual sense. Similarly we can
consider any category with finite products e.g. Top. A monoid in Cat is a
strict monoidal category (one for which α, λ, ρ are identities).

(b) In a cocartesian monoidal category (C,+, 0) every object has a unique (com-
mutative) monoidal structure given by the unique morphism 0→ A and the
codiagonal map A+A→ A,

(c) In (AbGp,⊗,Z) (commutative) monoids are (commutative) rings.

(d) In [C, C] monoids are monads.

(e) In ∆, the object 1 has a monoid structure given by the unique maps 0→ 1
and 1 + 1 = 2 → 1, This is the ‘universal monoid’, given any monoidal
category (C,⊗, I), the category of strong monoidal functors ∆→ C is equiv-
alent to the category of monoids in C by the functor sending F : ∆ → C
to F (1) (note that given a monoid (A,m, e) in B and a (lax) monoidal

functor F : B → C, FA has a monoidal structure given by FA ⊗ FA θ−→
F (A⊗A)

Fm−−→ FA and I
ι−→ FI

Fe−−→ FA). Given a monoid (A, l, e) in C, the

morphisms

n︷ ︸︸ ︷
(...(A⊗A)⊗A...) →

m︷ ︸︸ ︷
(...(A⊗A)⊗A...) by composing instance

of l and e correspond to the morphisms in ∆(n,m)

There is also a universal commutative monoid living in the category Setf of
finite sets and functions between them (with the cocartesian monoidal structure):
it is the terminal object 1. Given a commutative monoid (A,m, e) in a arbitrary

system, monoidal category (C,⊗, I), the assignment n 7→
n︷ ︸︸ ︷

(...(A⊗A)⊗ ...)⊗A
can be made into a strong monoidal function Setf → C.

7.9 Definition. Let (C,⊗, I) be a monoidal category. We say the monoidal
structure is left closed, if, for each A ∈ ob C, A ⊗ − : C → C has a right adjoint.
Similarly ⊗ is right closed if − ⊗ A has a right adjoint. If both hold, we say ⊗
is biclosed. For a symmetric monoidal structure ⊗, we say ⊗ is closed if it is left
(equivalently right) closed. We write [A,−] for the right adjoint of −⊗A. So we
have natural bijections between C(A, [B,C]) and C(A ⊗ B,C), natural in A and
C.
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7.10 Examples.

(a) (Set,×, 1) is closed. We say cartesian closed if (C,×, 1) is closed. We know
that functions A×B → C correspond naturally to functions A→ CB where
CB is the set of functions B → C, so we set [B,C] = CB .

(b) Cat is cartesian closed. Here we take [C,D] to be the category of all functors
C → D and it is easy to see that functors B → [C,D] correspond to functors
B × C → D.

(c) For any small category C, [C,Set] is cartesian closed.

Proof. (1) Use the special adjoint functor theorem: − × F : [C,Set] →
[C,Set] preserves all small colimits, since limits and colimits are constructed
pointwise by 4.7d. We know [C,Set] is cocomplete and locally small, has a
separating set {C(A,−) : A ∈ ob C} and its well-copowered (since epimor-
phisms are pointwise surjective).

Proof. (2) Use the Yoneda lemma: whatever [F,G] is, elements of [F,G](A)
must correspoind to natural transformations C(A,−) × F → G. So we
define [F,G](A) = [C,Set](C(A,−) × F,G). Given f : A → B, we have
G(f,−) : C(B,−) → C(A,−) and composition with C(f,−) × 1F yeilds a
mapping [F,G](A) → [F,G](B). This makes [F,G] into a functor. Verify
that, for any H natural transformations H → [F,G] correspond bijectively
to natural transformations H × F → G.

(d) (AbGp,⊗,Z) is closed: homomiorphisms A⊗B → C correspond to bilinear
maps A × B → C, which in turn correspond to homomorphisms A →
AbGp(B,C) where AbGp(B,C) is equipped with the pointwise abelian
group structure, (f + g)(b) = f(b) + g(b).
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