Name:_____

Test 1Math 2310Spring 2013communicate: show work and indicate reasons

1a) Solve the system $A\vec{x} = \vec{b}$ by elimination on the augmented matrix $[A \vec{b}]$, where

	1	-1	0			0	
A =	1	3	-1	,	$\vec{b} =$	1	
	0	4	2		$\vec{b} =$	$\lfloor 7 \rfloor$	

1b) Use the calculations you have done above, to write lower and upper triangular matrices for which A = LU.

2) $B = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$. Find B^{-1} and use it to solve $B\vec{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$ 3a) Explain why the nullspace of a matrix A is closed under scalar multiplication, that is, if \vec{v} is in the nullspace of A and c is a number, why is $c\vec{v}$ also in the nullspace?

3b) A matrix B has been reduced by row operations to

$$R = \begin{bmatrix} 1 & -1 & 0 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Find all solutions to $B\vec{x} = \vec{0}$.

4)
$$\vec{w}_1 = \begin{bmatrix} k \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{w}_2 = \begin{bmatrix} 1 \\ k \\ 1 \end{bmatrix}$, $\vec{w}_3 = \begin{bmatrix} 1 \\ 1 \\ k \end{bmatrix}$.

Find k so that any two of these vectors are orthogonal. Then find the length $||\vec{w_1}||$ and the distance $||\vec{w_2} - \vec{w_3}||$. some short answers:

1.
$$\vec{x} = \begin{bmatrix} \frac{3}{4} \\ \frac{3}{4} \\ 2 \end{bmatrix}$$

2. $\vec{x} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

3. there are two pivots and two free variables

4.
$$||\vec{w}_1|| = 3/2$$