HW9 Solutions

Math 2310
6.3.4
WZ %—i—%’:w—v—l—v—w:o, so v + w is constant.

o -1 1
du __ —
d—? = [ 1 1 ] U.
The matrix A has rank 1, so 0 is an eigenvalue with (1, 1) as its eigenvector, and since the
trace is -2, the other eigenvalue is -2 with eigenvector (1, —1).

Therefore the general solution is 4 = ¢

10 ] gives

+de™ % [ 1 ] , and plugging in 4(0) = [ 30

the equation
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with solution ¢ = 20, d = 10. Therefore we have
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6.3.5

The eigenvalues are now 0 and +2. e~ goes to 0, but e™ is infinite, so v(t) grows
infinitely large over time.



We want the eigenvalues and eigenvectors of the matrix [ ]

We have 0 = (6 — A\)(1 — A) +4 = A2 —7A 4+ 10 = (A — 2)(A — 5), so the eigenvalues are 2
and 5. The corresponding eigenvectors are (1,2) and (2,1) respectively. 7(0) = w(0) = 30
w
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with solution (¢, d) = (10, 10). So at time ¢ we have
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and for large t the second term dominates and the ratio of rabbits to wolves is 2 to 1.

gives the equation
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6.3.11

1 ¢

A%? =0, 50 A" =0 for all n > 2, and therefore et = I + At = 01

e(y(0),4/(0)) = (y(0)+%/(0)t,%(0)), so the solution for y(t) is (0) +3'(0)t with constant
first derivative y/(0).

6.3.13

(a) Both asin(£3t) and bcos(+3t) solve the equation. If we want y'(0) to be 0 and y(0) to be
positive we should choose the cosine, and to make y(0) = 3 we get b = 3, so y(t) = 3cos(3t).

(b) The eigenvalues of A solve A\2+9 = 0, so A = 3i, —3i and the eigenvectors are (1,37)
and (1,—3¢). The initial conditions give the equations ¢ + d = 3 and 3ic — 3id = 0, so

¢ =d = 3/2, therefore y(t) = SM = 3cos(3t).
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6.3.15

(a) Here A = [1], the 1 by 1 identity matrix, so u = 4 is a particular solution. The

t

homogeneous solution u,, to % = u is cel, so the complete solution is ce’ + 4.

10
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izable so its only eigenvector is (0, 1). Therefore the complete solution is u(t) = (4, ce! +2).

(b) A~! = , 50 A~'b = (4,2). Both eigenvalues of A are 1 but A is not diagonal-

6.3.21

The eigenvalues of A are 1,0 (as an upper triangular matrix) with eigenvectors (1,0) and
(4,—1). Therefore

1 4 10 1 4
0 —1 00 0 —1
and
QAL _ ot y—1 _ 1 4 el 0 I 4] |1 4 el 4et _ et det —4
0 —1 0 1 0 —1 0 -1 0 -1 0 1

6.3.26

A:

(a) Its inverse is e~*. You can check that this works for the same reason e~ is the inverse
of e* for real numbers.

(b) If Az = Az then ez = e*z, and e is always nonzero.

6.4.7

2 1 2
Q=1 2 -2 -1
-1 -2 -2



6.4.8

S is singular so 0 is an eigenvalue, and the trace is 25 so that must be the other eigenvalue.
The corresponding eigenvectors are (4, —3) and (3,4) which normalize to :l:(%7 —2) and

:l:(%, %) An orthogonal matrix diagonalizing S has as columns these eigenvectors in either

order, each with either choice of sign, so there are 8 possible choices.

6.4.9
(a) Eigenvalues for this matrix solve 0 = (1= X)?2 =% = (1+b—A)(1—b—\),s0 A = 1 £b.
One of those is negative when |b] > 1.
(b) The second pivot of this matrix is 1 — b2, which is always negative if |b] > 1.

(¢) 1 £ has, regardless of the sign of b, one value less than or equal to 1 and one value
greater than or equal to 1, and the latter is always positive.

6.4.12

The fake proof assumes that the eigenvectors z are vectors of real numbers, which isn’t
always the case. Complex eigenvalues often have complex eigenvectors.

6.4.16

M is antisymmetric and also orthogonal, so its eigenvalues are pure imaginary and unit
length, so all are either i or —i. As the trace is 0, the eigenvalues (with multipliciy) must
be 4,1, —i, —i.

6.4.20

1. They are perpendicular because when S = ST the nullspace is the same as the left
nullspace which is orthogonal to the column space, which contains x.

2. If a and 3 are eigenvalues of A, then S — BI has the same eigenvectors with eigenvalues
shifted by 38 to get a« — 8 and 0. So by the previous part the eigenspaces for these are
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orthogonal, hence so are the eigenspaces for o and S.

6.4.23

(a) False. Any matrix with n distinct real eigenvalues has n real eigenvectors, so (for
instance) any triangular (upper or lower) matrix with distinct diagonal entries is diagonal-
izable but not symmetric.

(b) True. The matrix then diagonalizes as XAX ! where X~! = XT. The transpose is
then (XAXT)T = (XT)TATXT = XAXT, so it is symmetric.

(c) True. If A is invertible then (AT)™! = (A™H7 so if A = AT then A~! = (A~1)T. Also

follows from the diagonalization as XA~'X7 is symmetric.

0 1
(d) False. [ L0 ]is symmetric with eigenvectors (1,1) and (1,-1), which can be arranged

1
into a matrix as L They could also be put in the other order and be symmetric,

but this arbitrariness is how we know X does not need to be symmetric.

6.4.35
(a) If S =ST and ST =S~ ! then S =S5"150 95 =95"1=1.
(b) The eigenvalues can only be +1.

(c) A is any diagonal matrix with only 1 or -1 in the diagonals.

6.5.2
Sy is not positive definite as ac — > = 35 — 36 = —1 < 0. For z = (2,-1), 27512 =
5%x2—2%6%x24+7x1=10—-24+7=-7<0.
S9 is not positive definite as a = —1 < 0.
S3 is not positive definite as ac — b = 100 — 100 = 0.

Sy is positive definite as a =1 > 0 and ac — b = 101 — 100 = 1 > 0.
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6.5.3 (last matrix)

Using the first test, we want ¢ > 0 and ¢ — b% > 0 (so |c| > |b]).
1 1
—b/ec 0

c 0
DZ[O c—b/c]

L =

6.5.8

S = [ 2 166 ] , which indeed has pivots 3 and 4.

6.5.9
1 -1 2
S=4| -1 1 —2 |. Note that each entry in the matrix is a product of two terms in
2 -2 4

the expression x1 — x9 + 2x3.

The only pivot is 4, the rank is 1, the eigenvalues are 0,0,24, the determinant is 0.

6.5.16

x1,x2,23) = (0,1,0), since 7Sz is then sp0x3 = 0.
203

6.5.17

If a diagonal entry s;; of a symetric matrix were smaller than all of the eigenvalues, then
S — sj;1 would have all positive eigenvalues and would then be positive definite. But
S — sj; has a 0 on the main diagonal so it cannot be positive definite as seen in the
previous problem.
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6.5.30

To have a saddle point az? + 2bxy + cy? needs to look like Az — Aoy? with some rotation
a b

or reflection in the zy-plane, which is the same as the matrix b having one positive
c

and one negative eigenvalue. This happens exactly when the determinant of the matrix is
negative, so we want b% > ac.

6.5.36
(a) The eigenvalues of \iI — S are 0 < A\ — A2 < -+ < A\; — A\, which are all nonnegative
so A1l — S is positive semidefinite.

(b) M\ I — S is positive semidefinite, so #7 (A1 I — S)z > 0, hence \jzTz > 27 Sx.

T

(c) Since z' x is always positive for x # 0, this gives the inequality A\; > “;TT%’ .



