
HW9 Solutions

Math 2310

6.3.4

d(v+w)
dt = dv

dt + dw
dt = w − v + v − w = 0, so v + w is constant.

d~u
dt =

[
−1 1

1 −1

]
~u.

The matrix A has rank 1, so 0 is an eigenvalue with (1, 1) as its eigenvector, and since the

trace is -2, the other eigenvalue is -2 with eigenvector (1,−1).

Therefore the general solution is ~u = c

[
1

1

]
+de−2t

[
1

−1

]
, and plugging in ~u(0) =

[
30

10

]
gives

the equation[
1 1

1 −1

][
c

d

]
=

[
30

10

]
with solution c = 20, d = 10. Therefore we have

~u = 20

[
1

1

]
+10e−2t

[
1

−1

]
so

~u(1) =

[
20

20

]
+e−2

[
10

−10

]
and

~u(∞) =

[
20

20

]

6.3.5

The eigenvalues are now 0 and +2. e−∞ goes to 0, but e+∞ is infinite, so v(t) grows

infinitely large over time.
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6.3.8

We want the eigenvalues and eigenvectors of the matrix

[
6 −2

2 1

]
.

We have 0 = (6− λ)(1− λ) + 4 = λ2 − 7λ+ 10 = (λ− 2)(λ− 5), so the eigenvalues are 2

and 5. The corresponding eigenvectors are (1, 2) and (2, 1) respectively. r(0) = w(0) = 30

gives the equation[
r

w

]
(0) = c

[
1

2

]
+d

[
2

1

]
=

[
30

30

]
with solution (c, d) = (10, 10). So at time t we have[
r

w

]
= 10e2t

[
1

2

]
+10e5t

[
2

1

]
and for large t the second term dominates and the ratio of rabbits to wolves is 2 to 1.

6.3.11

A2 = 0, so An = 0 for all n ≥ 2, and therefore eAt = I +At =

[
1 t

0 1

]
.

eAt(y(0), y′(0)) = (y(0)+y′(0)t, y′(0)), so the solution for y(t) is y(0)+y′(0)t with constant

first derivative y′(0).

6.3.13

(a) Both asin(±3t) and bcos(±3t) solve the equation. If we want y′(0) to be 0 and y(0) to be

positive we should choose the cosine, and to make y(0) = 3 we get b = 3, so y(t) = 3cos(3t).

(b) The eigenvalues of A solve λ2 + 9 = 0, so λ = 3i,−3i and the eigenvectors are (1, 3i)

and (1,−3i). The initial conditions give the equations c + d = 3 and 3ic − 3id = 0, so

c = d = 3/2, therefore y(t) = 3 e
3it+e−3it

2 = 3cos(3t).
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6.3.15

(a) Here A = [1], the 1 by 1 identity matrix, so u = 4 is a particular solution. The

homogeneous solution un to du
dt = u is cet, so the complete solution is cet + 4.

(b) A−1 =

[
1 0

−1 1

]
, so A−1b = (4, 2). Both eigenvalues of A are 1 but A is not diagonal-

izable so its only eigenvector is (0, 1). Therefore the complete solution is u(t) = (4, cet+2).

6.3.21

The eigenvalues of A are 1, 0 (as an upper triangular matrix) with eigenvectors (1, 0) and

(4,−1). Therefore

A =

[
1 4

0 −1

][
1 0

0 0

][
1 4

0 −1

]
and

eAt = XeΛtX−1 =

[
1 4

0 −1

][
et 0

0 1

][
1 4

0 −1

]
=

[
1 4

0 −1

][
et 4et

0 −1

]
=

[
et 4et − 4

0 1

]

6.3.26

(a) Its inverse is e−At. You can check that this works for the same reason e−x is the inverse

of ex for real numbers.

(b) If Ax = λx then eAtx = eλx, and eλ is always nonzero.

6.4.7

Q = 1
3

 2 1 2

2 −2 −1

−1 −2 −2


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6.4.8

S is singular so 0 is an eigenvalue, and the trace is 25 so that must be the other eigenvalue.

The corresponding eigenvectors are (4,−3) and (3, 4) which normalize to ±(4
5 ,−

3
5) and

±(3
5 ,

4
5). An orthogonal matrix diagonalizing S has as columns these eigenvectors in either

order, each with either choice of sign, so there are 8 possible choices.

6.4.9

(a) Eigenvalues for this matrix solve 0 = (1−λ)2− b2 = (1 + b−λ)(1− b−λ), so λ = 1± b.
One of those is negative when |b| > 1.

(b) The second pivot of this matrix is 1− b2, which is always negative if |b| > 1.

(c) 1 ± b has, regardless of the sign of b, one value less than or equal to 1 and one value

greater than or equal to 1, and the latter is always positive.

6.4.12

The fake proof assumes that the eigenvectors x are vectors of real numbers, which isn’t

always the case. Complex eigenvalues often have complex eigenvectors.

6.4.16

M is antisymmetric and also orthogonal, so its eigenvalues are pure imaginary and unit

length, so all are either i or −i. As the trace is 0, the eigenvalues (with multipliciy) must

be i, i,−i,−i.

6.4.20

1. They are perpendicular because when S = ST the nullspace is the same as the left

nullspace which is orthogonal to the column space, which contains x.

2. If α and β are eigenvalues of A, then S−βI has the same eigenvectors with eigenvalues

shifted by β to get α − β and 0. So by the previous part the eigenspaces for these are



– 5 –

orthogonal, hence so are the eigenspaces for α and β.

6.4.23

(a) False. Any matrix with n distinct real eigenvalues has n real eigenvectors, so (for

instance) any triangular (upper or lower) matrix with distinct diagonal entries is diagonal-

izable but not symmetric.

(b) True. The matrix then diagonalizes as XΛX−1 where X−1 = XT . The transpose is

then (XΛXT )T = (XT )TΛTXT = XΛXT , so it is symmetric.

(c) True. If A is invertible then (AT )−1 = (A−1)T , so if A = AT then A−1 = (A−1)T . Also

follows from the diagonalization as XΛ−1XT is symmetric.

(d) False.

[
0 1

1 0

]
is symmetric with eigenvectors (1,1) and (1,-1), which can be arranged

into a matrix as

[
1 1

−1 1

]
. They could also be put in the other order and be symmetric,

but this arbitrariness is how we know X does not need to be symmetric.

6.4.35

(a) If S = ST and ST = S−1 then S = S−1 so SS = SS−1 = I.

(b) The eigenvalues can only be ±1.

(c) Λ is any diagonal matrix with only 1 or -1 in the diagonals.

6.5.2

S1 is not positive definite as ac − b2 = 35 − 36 = −1 < 0. For x = (2,−1), xTS1x =

5 ∗ 2− 2 ∗ 6 ∗ 2 + 7 ∗ 1 = 10− 24 + 7 = −7 < 0.

S2 is not positive definite as a = −1 < 0.

S3 is not positive definite as ac− b2 = 100− 100 = 0.

S4 is positive definite as a = 1 > 0 and ac− b2 = 101− 100 = 1 > 0.
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6.5.3 (last matrix)

Using the first test, we want c > 0 and c2 − b2 > 0 (so |c| > |b|).

L =

[
1 1

−b/c 0

]

D =

[
c 0

0 c− b/c

]

6.5.8

S =

[
3 6

6 16

]
, which indeed has pivots 3 and 4.

6.5.9

S = 4

 1 −1 2

−1 1 −2

2 −2 4

. Note that each entry in the matrix is a product of two terms in

the expression x1 − x2 + 2x3.

The only pivot is 4, the rank is 1, the eigenvalues are 0,0,24, the determinant is 0.

6.5.16

(x1, x2, x3) = (0, 1, 0), since xTSx is then s2,2x
2
2 = 0.

6.5.17

If a diagonal entry sjj of a symetric matrix were smaller than all of the eigenvalues, then

S − sjjI would have all positive eigenvalues and would then be positive definite. But

S − sjj has a 0 on the main diagonal so it cannot be positive definite as seen in the

previous problem.
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6.5.30

To have a saddle point ax2 + 2bxy+ cy2 needs to look like λ1x
2− λ2y

2 with some rotation

or reflection in the xy-plane, which is the same as the matrix

[
a b

b c

]
having one positive

and one negative eigenvalue. This happens exactly when the determinant of the matrix is

negative, so we want b2 > ac.

6.5.36

(a) The eigenvalues of λ1I − S are 0 ≤ λ1 − λ2 ≤ · · · ≤ λ1 − λn, which are all nonnegative

so λ1I − S is positive semidefinite.

(b) λ1I − S is positive semidefinite, so xT (λ1I − S)x ≥ 0, hence λ1x
Tx > xTSx.

(c) Since xTx is always positive for x 6= 0, this gives the inequality λ1 ≥ xTSx
xT x

.


