HW2 Solutions

Math 2310

1.3.1

$$3 \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + 4 \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} + 5 \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} = \begin{bmatrix} 3+0+0\\3+4+0\\3+4+5 \end{bmatrix} = \begin{bmatrix} 3\\7\\12 \end{bmatrix} = b.$$
$$b = Sx = \begin{bmatrix} 1 & 0 & 0\\1 & 1 & 0\\1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3\\4\\5 \end{bmatrix} = \begin{bmatrix} (1,0,0) \cdot x\\(1,1,0) \cdot x\\(1,1,1) \cdot x \end{bmatrix} = \begin{bmatrix} 3\\7\\12 \end{bmatrix}.$$

1.3.8

 $x_1 = b_1$. $-x_1 + x_2 = b_2$, so $x_2 = b_1 + b_2$. $-x_2 + x_3 = b_3$, so $x_3 = b_1 + b_2 + b_3$. $-x_3 + x_4 = b_4$, so $x_4 = b_1 + b_2 + b_3 + b_4$. These assemble into

$$x = \begin{bmatrix} b_1 \\ b_1 + b_2 \\ b_1 + b_2 + b_3 \\ b_1 + b_2 + b_3 + b_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

1.3.14

If (a, b) is a multiple of (c, d), then for some e we have a = ec and b = ed. This means (a, c) = (ec, c) = c(e, 1) and (b, d) = (ed, d) = d(e, 1), so we have $\frac{d}{c}(a, c) = \frac{cd}{c}(e, 1) = d(e, 1) = (b, d)$.

2.1.5

If x, y, z satisfy the first two equations then they also satisfy the third. Some solutions on the line: (0, 1, 1), (1, 1, 0), (2, 1, -1).

2.1.8

Four 3-dimensional planes in 4-dimensional space typically meet at a point, as each plane is defined by a linear equation so their intersection is described by 4 equations in 4 variables, which typically have a single point as a solution.

2.1.9b

$\begin{bmatrix} 2 \end{bmatrix}$	1	0	0	$\left[\left[1 \right] \right]$	$\left[(2,1,0,0) \cdot (1,1,1,2) \right]$	$\begin{bmatrix} 2+1+0+0 \end{bmatrix}$	3
1	2	1	0	1	$(1,2,1,0) \cdot (1,1,1,2)$	1+2+1+0	4
0	1	2	1	$ 1 ^{=}$	$(0,1,2,1) \cdot (1,1,1,2)$	0+1+2+2 =	5
0	0	1	2	2	$(0,0,1,2) \cdot (1,1,1,2)$	0 + 0 + 1 + 4	5

2.1.10b

$\begin{bmatrix} 2 \end{bmatrix}$	1	0	0	1		2		1		0		0		2 + 1 + 0 + 2 * 0		3
1	2	1	0	1		1		2		1		0		1 + 2 + 1 + 2 * 0		4
0	1	2	1	1	=	0	+	1	+	2	+2	1	=	0 + 1 + 2 + 2 * 1	=	5
0	0	1	2	2		0		0		1		2		0 + 0 + 1 + 2 * 2		5

2.1.12

$\left[\begin{array}{c}z\\y\\x\end{array}\right]$		
$\left[\begin{array}{c} 2+1-3\\ 1+2-3\\ 3+3-6\end{array}\right]$	=	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
$\left[\begin{array}{c}2+1\\1+2\\3+3\end{array}\right]=$	$\left[\begin{array}{c}3\\3\\6\end{array}\right]$	

– 3 –

$$M_3 = \left[\begin{array}{rrrr} 8 & 3 & 4 \\ 1 & 5 & 9 \\ 6 & 7 & 2 \end{array} \right].$$

 $M_3(1,1,1) = (15,15,15)$ for any choice of M_3 . M_4 should be defined so each row sums to (1 + ... + 16)/4 = 136/4 = 34, so we would have M_4 times (1,1,1,1) as (34,34,34,34).

2.2.8

k = 0 is fixed by a row exchange and has 1 solution.

k = 3 is not fixed by a row exchange and has no solutions as 3x + 3y cannot be both 6 and -6.

k = -3 is not fixed by a row exchange and has ∞ solutions as the second equation is just the first one scaled on both sides by -1, and -3x + 3y = 6 has infinitely many solutions.

2.2.11

(a) If A is a 3x3 matrix and both A(x, y, z) = b, A(X, Y, Z) = b, then

$$A(\frac{1}{2}(x,y,z) + \frac{1}{2}(X,Y,Z)) = \frac{1}{2}A(x,y,z) + \frac{1}{2}A(X,Y,Z) = \frac{1}{2}b + \frac{1}{2}b = b$$

so $\frac{1}{2}(x, y, z) + \frac{1}{2}(X, Y, Z)$ is another solution.

(b) The planes also meet everywhere on the unique line containing both of the two points.

2.2.12

$\begin{bmatrix} x \end{bmatrix}$		$\begin{bmatrix} 2 \end{bmatrix}$	
y	=	1	
		1	

Subtract $2 \times \text{row 1}$ from row 2

Subtract $1 \times \text{row } 1$ from row 3

Subtract $2 \times \text{row } 2$ from row 3

$$\left[\begin{array}{c} x\\ y\\ z \end{array}\right] = \left[\begin{array}{c} 3\\ 1\\ 0 \end{array}\right]$$

2.2.13