# HW2 Solutions

 ${\rm Math}~2310$ 



$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$
$$U = EA = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 4 & 2 \\ 0 & 0 & 5 \end{bmatrix}$$
$$L = E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

2.6.7

$$E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$
$$E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$
$$U = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$

### 2.6.9

Some textbooks seem to have different versions of this problem, which will not be graded for correctness.

### 2.6.12

Some textbooks seem to have different versions of this problem, which will not be graded for correctness.

### 2.7.16

(a)  $(AA)^T = A^T A^T = AA$  so  $A^2$  and likewise  $B^2$  are symmetric, hence their difference is also symmetric.

(b)  $(A + B)(A - B) = A^2 + BA - AB - B^2$ , which by (a) is symmetric if and only if BA - AB is symmetric.  $(BA - AB)^T = A^T B^T - B^T A^T = AB - BA = -1(BA - AB)$ , so if AB is nonzero this is NOT symmetric.

(c)  $(ABA)^T = A^T B^T A^T = ABA$  since transpose reverses multiplication order.

(d)  $(ABAB)^T = B^T A^T B^T A^T = BABA$  which is not generally the same as ABAB.

### 2.7.17ab

(a)  $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (b)  $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 

2.7.20

 $\left[\begin{array}{rrr}1 & 3\\3 & 2\end{array}\right] = \left[\begin{array}{rrr}1 & 0\\3 & 2\end{array}\right] \left[\begin{array}{rrr}1 & 0\\0 & -7\end{array}\right] \left[\begin{array}{rrr}1 & 3\\0 & 2\end{array}\right]$ 

$$\begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & c - b^2 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & \frac{4}{3} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix}$$

# 2.7.39

$$Q = \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix} \text{and } Q^T = \begin{bmatrix} q_1^T \\ \cdots \\ q_n^T \end{bmatrix}, \text{ so } (Q^T Q)_{ij} = q_i^T q_j = q_i \cdot q_j \text{ and since } Q^T Q = I,$$
  
this means  $q_i \cdot q_j = 1$  when  $i = j$  and  $q_i \cdot q_j = 0$  when  $i \neq j$ .

(a)  $q_i \cdot q_i = 1$  so each  $q_i$  is a unit vector.

(b) For  $i \neq j$ ,  $q_i \cdot q_j = 0$  so  $q_i$  and  $q_j$  are perpendicular.

(c) We want the columns to be unit vectors so if  $A = \begin{bmatrix} \cos\theta & q_{12} \\ q_{21} & q_{22} \end{bmatrix}$ , then  $\cos^2\theta + q_{21}^2 = 1$ . So a good choice for  $q_{21}$  is  $\sin\theta$  ( $-\sin\theta$  would also work). So the column  $q_1$  is just the point with angle  $\theta$  on the unit circle, and since  $q_2$  must be perpendicular to it we can use  $theta + \frac{\pi}{2}$  (or  $\theta - \frac{\pi}{2}$ ). We then get

$$Q = \begin{bmatrix} \cos\theta & \cos(\theta + \frac{p_i}{2})\\ \sin\theta & \sin(\theta + \frac{\pi}{2}) \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

Checking this has  $Q^T Q = I$  gives

$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos^{\theta} + \sin^{2}\theta & -\cos\theta\sin\theta + \sin\theta\cos\theta \\ -\sin\theta\cos\theta + \cos\theta\sin\theta & \sin^{2}\theta + \cos^{2}\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{as desired.}$$

# 3.1.1

Conditions (1), (2), and (8) don't hold here.

### 3.1.3

(a) With the usual scaling, this space is only closed under scaling cx with c is positive, which isn't allowed. Also, (3) is broken as there is no zero vector, (4) is broken as there is no (-x) > 0 if x > 0, and (6),(7),(8) don't really make sense as not all scalings are positive numbers.

(b) c(x + y) is the usual  $(xy)^c$ , while cx + cy is the usual  $(x^c)(y^c)$ . Those are equal. With c = 3, x = 2, y = 1 this is 3(2 + 1) = 8. The zero vector is the number 1.

#### 3.1.6

 $3(x^2) - 4(5x) = 3x^2 - 20x$ 

### 3.1.15

(a) The intersection of two planes through (0,0,0) in  $\mathbb{R}^3$  is probably a *line* in  $\mathbb{R}^3$  but it could be a *plane*.

(b) The intersection of a plane through (0,0,0) with a line through (0,0,0) is probably a *point* but it could be a *line*.

(c) If x, y are in  $S \cap T$  then they are in S and in T, so cx + dy is in S and is in T for all  $c, d \in \mathbb{R}$ , so cx + dy is therefore in  $S \cap T$ , which is therefore a subspace.

### 3.1.25

z = x + y.

# 3.1.27

(a) False. 0 is always in the column space, so the vectors not in the column space don't include 0.

(b) True. If A has any nonzero entry then the column containing that entry is a nonzero vector in the column space.

(c) True. The span of any set of vectors is the same as the span of 2\* each of those vectors. (d) False. If A = I the column space of A is all of  $R^n$  and the column space of A - I = I - I = 0 is the zero vector.

# 3.1.29

If the 9 by 12 system Ax = b is solvable for every b, then  $C(A) = \mathbb{R}^9$ . As every vector b in  $\mathbb{R}^9$  is a linear combination of the columns of A.

# 3.2.1

(a) 
$$U = \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 with free variables  $x_2, x_4, x_5$  and pivot variables  $x_1, x_3$ .  
(b)  $U = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 0 \end{bmatrix}$  with free variable  $x_3$  and pivot variables  $x_1, x_2$ .

# 3.2.2

### 3.2.3

(a) 
$$R = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
  
(b)  $R = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ 

R has the same nullspace as U since they are related by row operations (which are invertible

and don't affect the zero vector).

# 3.2.4

(a) (3,1,0) and (5,0,1)

(b) (3,1,0)

The number of pivots plus free variables is n, since every column either has a pivot or acts on a free variable.

|     | 0   | 1 | 1 | 1 | 1 | 1 | 1   |
|-----|-----|---|---|---|---|---|-----|
| (a) | 0   | 0 | 0 | 1 | 1 | 1 | 1   |
| (a) | 0   | 0 | 0 | 0 | 1 | 1 | 1   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0   |
|     | [1] | 1 | 1 | 1 | 1 | 1 | 1 ] |
| (h) | 0   | 0 | 1 | 1 | 1 | 1 | 1   |
| (D) | 0   | 0 | 0 | 0 | 0 | 1 | 1   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 1   |
|     | 0   | 0 | 0 | 1 | 1 | 1 | 1]  |
| (a) | 0   | 0 | 0 | 0 | 0 | 1 | 1   |
| (a) | 0   | 0 | 0 | 0 | 0 | 0 | 0   |
|     | 0   | 0 | 0 | 0 | 0 | 0 | 0   |

3.2.6

3.2.16

|     | 1 | 0 | 0 | -4 |             |
|-----|---|---|---|----|-------------|
| A = | 0 | 1 | 0 | -3 | has rank 3. |
|     | 0 | 0 | 1 | -2 |             |

### 3.3.1

| ſ | 2 | 4 | 6 | 4 | $b_1$ |               | 2 | 4  | 6  | 4  | $b_1$       |                 | 2 | 4 | 6 | 4 | $b_1$              |
|---|---|---|---|---|-------|---------------|---|----|----|----|-------------|-----------------|---|---|---|---|--------------------|
|   | 2 | 5 | 7 | 6 | $b_2$ | $\rightarrow$ | 0 | 1  | 1  | 2  | $b_2 - b_1$ | $  \rightarrow$ | 0 | 1 | 1 | 2 | $b_2 - b_1$        |
|   | 2 | 3 | 5 | 2 | $b_3$ |               | 0 | -1 | -1 | -2 | $b_3 - b_1$ |                 | 0 | 0 | 0 | 0 | $b_3 + b_2 - 2b_1$ |

Ax = b has a solution when  $b_3 + b_2 - 2b_1 = 0$ ; the column space contains all combinations of (2, 2, 2) and (4, 5, 3). This is the plane  $b_3 + b_2 - 2b_1 = 0$ . The nullspace contains all combinations of  $s_1 = (-1, -1, 1, 0)$  and  $s_2 = (2, -2, 0, 1)$ ;  $x_{complete} = x_p + c_1s_1 + c_2s_2$ .

$$[Rd] = \begin{bmatrix} 1 & 0 & 1 & -2 & 4 \\ 0 & 1 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 gives the particular solution  $x_p = (4, -1, 0, 0).$ 

# 3.3.5

$$\begin{bmatrix} 1 & 2 & -2 & b_1 \\ 2 & 5 & -4 & b_2 \\ 4 & 9 & -8 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -2 & b_1 \\ 0 & 1 & 0 & b_2 - 2b_1 \\ 0 & 0 & 0 & b_3 - 2b_1 - b_2 \end{bmatrix}$$
is solvable when  $b_3 - 2b_1 - b_2 = 0$ .

Back-substitution gives the particular solution to Ax = b and the special solution to ax = 0:

$$x = \begin{bmatrix} 5b_1 - 2b_2 \\ b_2 - 2b_1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

### 3.3.23

For A, q = 3 gives rank 1, every other q gives rank 2. For B, q = 6 gives rank 1, every other q gives rank 2. These matrices cannot have rank 3.

### 3.3.34

(a) If s = (2, 3, 1, 0) is the only special solution to Ax = 0, the complete solution is x = cs (a line of solutions). The rank of A must be 4 - 1 = 3.

(b) The fourth variable  $x_4$  is not free in s, and R must be  $\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ .

(c) Ax = b can be solved for all b, because A and R have full row rank r = 3.

# 3.3.36

Yes! Let b be the first column of A. Then x = (1, 0, 0, ...) is a solution to Ax = b so x is also a solution to Cx = b, which means b is also the first column of C, so A and C have the same first column. This can be repeated for each column, so A and C have all the same columns and are therefore equal.