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3.4.4

If a, d, f are all nonzero, then f can be used to eliminate e, c and d can then be used to

eliminate b. Then each row can be scaled to have 1 on the diagonal, yielding the identity.

Therefore the matrix can be reduced to the identity by row operations, so the only solution

to Ux = 0 is 0.

3.4.5

Using row reduction we find that

(a) The matrix with these vectors as rows reduces to an upper triangular with all three

pivots, so they are independent.

(b) The matrix with these vectors as rows reduces to a matrix with the bottom row all 0s,

so they are dependent (in particular we can see that the third is -1 times the sum of the

first two)

3.4.7

v2 − v1 = w1 − w3 − w2 + w3 = w1 − w2 = v3, so v3 is a linear combination of v1, v2.

Therefore −v1 + v2 − v3 = 0.

[v1 v2 v3] = [w1 w2 w3]A where A =

 0 1 1

1 0 −1

−1 −1 0

, and this matrix A is easily checked

by elimination to be singular.

3.4.13

A row reduces to U , so the row spaces of A and U are the same, and the column spaces

of A and U have the same dimensions. In U it is clear that the row space has dimension
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2, hence so does the column space (as the second column is clearly a linear combinatino of

the first and third).

(a) 2 (b) 2 (c) 2 (d) 2

3.4.23

For A, row 3 is the same as row 1 and the first two rows are clearly independent (as row 2

is 0 in the first component and row 1 is not), so the first two rows form a basis. U clearly

has the same basis for its row space, so elimination fixes the row space.

For A column 2 is the sum of columns 1 and 3, so as we know from the row space that

C(A) is 2-dimensional, {(1, 0, 1), (2, 1, 2)} forms a basis. For U we also have column 2 as

the sum of columns 1 and 3, but this basis is now {(1, 0, 0), (2, 1, 0)}. These spaces have

the same dimension but the column space of U is precisely the xy-plane in R3 while that of

A includes vectors with a z-component, so elimination does not preserve the column space,

only its dimension.

We know that elimination preserves the null space, as we’ve been using that fact for a while

now to solve equations, so we only need to find the nullspace of U , which is x3(1,−1, 1),

or equivalently span{(1,−1, 1)}.

3.4.30

The space of 2× 3 matrices with (2, 1, 1) in the nullspace is the space of matrices A of the

form [v1 v2 v3] for column vectors v1, v2, v3 such that 2v1 + v2 + v3 = 0. Therefore, v1 and

v2 can be anything and v3 = −2v1 − v2, so a basis for this space is the same as a basis for

pairs of vectors v1, v2 with v3 computed appropriately. This looks like {A00, A01, A1,0, A1,1},
where

A00 =

[
1 0 −2

0 0 0

]
, A01 =

[
0 1 −1

0 0 0

]
, A10 =

[
0 0 0

1 0 −2

]
, and A11 =

[
0 0 0

0 1 −1

]
.

3.5.1

(a) The dimension of the row and column spaces are the same as the rank: 5. The dimension

of the null space is the number of columns minus the rank, here 9-5=4. The dimension of
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the left null space is the number of rown minus the rank, here 7-5=2.

(b) If the matrix has rank 3 then its column space is 3-dimensional, hence all of R3. As

there are 3 rows and the rowspace has dimension 3, the left nullspace is {~0} ⊂ R3.

3.5.3

Row space: {(0, 1, 2, 3, 4), (0, 0, 0, 1, 2)}. Column space: {(1, 1, 0), (3, 4, 1)}. Null space:

{(1, 0, 0, 0, 0), (0, 2,−1, 0, 0), (0, 2, 0,−2, 1)}. Left null space: {(1,−1, 1)}.

3.5.4

(a)

 1 0

1 0

0 1

. Both desired column space vectors are in fact columns, and the first and

third rows span all of R2 which of course contains both desired row space vectors.

(b) This is impossible as the number of columns is 2: the dimension of the column space,

1, plus the dimension of the null space, 1. But if vectors in the null space are 3-dimensional

as is the desired basis vector, this is a contradiction as then there must be 3 columns.

(c)


1 0 0

0 1 0

0 0 1

0 0 0

. The rank is 3, so the null space is 0-dimensional and the left nullspace is

1-dimensional.

(d)

[
−9 3

−3 1

]
.

(e) This is impossible because if the row and column spaces are the same the matrix must

be square, so the number of rown minus the rank is the same as the number of columns

minus the rank. This means the null space and left null space have the same dimension.

In the next section you see that the null space is orthogonal to the row space and the left

null space is orthogonal to the column space, so if the row space and column space are the

same so must be the null space and left null space.
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3.5.8

A: row space and column space are 3 dimensional. Null space is 2 dimensional. Left null

space is 0 dimensional.

B: row space and column space are 3 dimensional. Null space is 3 dimensional. Left null

space is 2 dimensional.

C: row space and column space are 0 dimensional. Null space is 2 dimensional. Left null

space is 3 dimensional.

3.5.11

(a) r < m as there must be dependent rows. r ≤ n as the rank never exceeds the number

of columns. There is no guaranteed inequality between m and n.

(b) The rank is less than the number of rows so the left null space has positive dimension.

3.5.12 1 0 1

0 0 0

1 0 2

. By definition of the null space, the dot product of any vector x in the null

space with any row vector is 0, so dot product of x with any linear combination of row

vectors is also 0. Therefore if any vector were in both the row space and the null space its

dot product with itself would be 0, which can’t happen for a nonzero vector.

3.5.15

Row exchange does not affect the row space (it’s still the span of the same vectors) or the

null space (this is why row operations help us solve linear equations). The column space

and left null space change. The new left null space contains (2, 1, 3, 4).
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3.5.21

A =

 u1v1 + w1z1 · · · u1vn + w1zn
...

...

umv1 + wmz1 · · · umvn + wmzn


(a) u and w span the column space as each column vector is a linear combination of them.

(b) v and z span the row space as each row vector is a linear combination of them.

(c) The rank is less than 2 if u,w are dependent or if v, z are dependent.

(d) Here the rank is 2.

4.1.4

If AB = 0 then the columns of B are in the null space of A. The rows of A are in the left

null space of B. With AB = 0, The left null space of A has dimension at least that of the

column space of B, here 2. But then A cannot have rank 2, as then the dimension of the

row space is 2 and the number of rows is the sum of the dimensions of the row space and

left null space which would then be 4 not 3.

4.1.5

(a) yT b = 0 because yTAx = yT b = 0 (for x some such solution) since yTA = 0.

(b) yTAx = 0 for such a y and yTA = [1 1 1], so (1, 1, 1) · x = 0.

4.1.6

y1 = 1, y2 = 1, y3 = −1. (1, 1,−1) is in the left null space of this matrix.

4.1.9

If ATAx = 0 then Ax = 0. Reason: Ax is in the nullspace of AT and also in the column

space of A and those spaces are orthogonal.
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4.1.19

Suppose L is a one-dimensional subspace (a line) in R3. Its orthogonal complement L⊥ is

the plane perpendicular to L. Then (L⊥)⊥ is a line perpendicular to L⊥. In fact (L⊥)⊥ is

the same as L.

4.1.24

The first column in A−1 is orthogonal to the space spanned by all but the first row of A.

4.1.30

dim(N(A)) ≥ dim(C(B)) = rank(B). By rank-nullity since A has 4 columns, 4 =

rank(A) + dim(N(A)) ≥ rank(A) + rank(B).


