
HW7 Solutions

Math 2310

4.4.1

(a) Independent, change the second vector to

[
0

1

]
.

(b) Orthogonal, change the second vector to

[
.8

−.6

]
.

(c) Orthonormal.

4.4.2

Q = 1
3

 2 −1

2 2

−1 2

.

QTQ =

[
1 0

0 1

]
.

QQT = 1
9

 5 2 −4

2 8 2

−4 2 5

.

4.4.3

(a) ATA is the 3 × 3 diagonal matrix with the columns of A’s lengths squared on the

diagonal.

(b) ATA is the 3× 3 diagonal matrix with 1, 4, 9 on the diagonal.
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4.4.4

(a) From 4.4.2, Q = 1
3

 2 −1

2 2

−1 2

.

(b) Any vector and 0 are orthogonal (dot product is 0) but not linearly independent.

(c) For this pick two other vectors independent of q1 = (1, 1, 1)/
√

3 and apply Gram-

Schmidt, or alternatively find two vectors orthogonal to q1 (and each other) and normalize

them. For example, q2 = (1,−1, 0)/
√

2 and q3 = (1, 1,−2)/
√

6.

4.4.7

The solution x̂ satisfies QTQx̂ = QT b but QTQ = I so x̂ = QT b.

4.4.14[
1 4

1 0

]
= 1√

2

[
1 1

1 −1

]
√

2

[
1 2

0 2

]
.

4.4.15

(a) Gram-Schmidt yields q1 = 1
3(1, 2,−2), q2 = 1

3(2, 1, 2), and q3 = 1
3(2,−2,−1).

(b) The left nullspace.

(c) x̂ = (ATA)−1AT (1, 2, 7) = (1, 2).

4.4.18

q1 = 1√
2
(1,−1, 0, 0), q2 = 1√

6
(1, 1,−2, 0), q3 = 1√

12
(1, 1, 1,−3).
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4.4.22

A = (1, 1, 2), B = (1,−1, 0), C = (−1,−1, 1). Completing Gram-Schmidt would also

divide these by their lengths.

4.4.24

(a) One basis for A is the 3 special solutions (−1, 1, 0, 0), (−1, 0, 1, 0), (1, 0, 0, 1) to the

equation x1 + x2 + x3 − x4 = 0.

(b) S is the subspace of vectors perpendicular to the vector (1, 1, 1,−1), so (1, 1, 1,−1) is

a basis for S⊥.

(c) Project onto both subspaces S, S⊥: b1 = 1
2(1, 1, 1, 3) and b2 = 1

2(1, 1, 1,−1).

4.5.1

det(2A) = 24det(A) = 16/2 = 8, as by linearity each of the 4 rows multiplied by 2

contributes a factor of 2.

det(−A) = (−1)4det(A) = 1/2 for the same reason.

det(A2) = det(A)det(A) = 1/4.

det(A−1)det(A) = det(A−1A) = det(I) = 1, so det(A−1) = 1/det(A) = 2.

4.5.3

(a) False. For I 2× 2, det(I + I) = det(2I) = 22det(I) = 4det(I) 6= det(I) + det(I).

(b) True, by repeated application of |AB| = |A||B|.

(c) False. If A is n× n for n > 1 then det(4A) = 4ndet(A) 6= 4det(A).

(d) False. For A =

[
0 0

0 1

]
and B =

[
0 1

1 0

]
, AB−BA =

[
0 −1

1 0

]
, which is invertible.
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4.5.4

For J3, exchange rows 1 and 3 to get I. which shows that det(J3) = −1.

For J4, exchange rows 1 and 4 then 2 and 3 to get I, which shows that det(J4) = (−1)2 = 1.

4.5.8a

1 = det(I) = det(QTQ) = det(QT )det(Q) = det(Q)det(Q) = det(Q)2, and the only possible

determinants det(Q) which square to 1 are 1 or -1.

4.5.10

If each row of A sums to 0 then A(1, ..., 1) = 0 so A has nontrivial nullspace and is not

invertible, so det(A) = 0.

If each row sums to 1 then A− I has each row sum to 0, so det(A− I) = 0. det(A) is not

necessarily 1 as the matrix

[
3 −2

−2 3

]
has this property but its determinant is 13.

4.5.11

|C||D| = (−1)n|D||C| where the matrices are n× n. Therefore this statement is only true

when n is odd.

4.5.12

For 2× 2 matrices, det(cA) = c2det(A) not cdet(A), so det(A−1) = 1
ad−bc = 1

det(A) .

4.5.13 (first matrix)

U =

 1 1 1

0 1 1

0 0 1

so det(A) = 1 as the product of the pivots.
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4.5.14 (first matrix)

U =


1 2 3 0

0 2 0 1

0 0 3 2

0 0 0 6

so det(A) = 1 ∗ 2 ∗ 3 ∗ 6 = 36.

4.5.15 (first matrix)

The first two steps of elimination reduces the first matrix to

 101 201 301

1 1 1

2 2 2

, which

clearly does not have linearly independent rows so its determinant is 0.

4.5.28

(a) For A,B square this is true as det(A) = 0 and det(AB) = det(A)det(B) = 0.

(b) This is false when a row exchange is used in reducing A to upper triangular form.

(c) False. det(2I − I) = det(I) = 1 but det(2I)− det(I) = 22 − 1 = 3.

(d) True. det(AB) = det(A)det(B) = det(B)det(A) = det(BA).


