HWT Solutions

Math 2310

4.4.1

(a) Independent, change the second vector to [ (1) ] .
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(b) Orthogonal, change the second vector to [ 6 ] .

(c) Orthonormal.
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4.4.3

(a) AT A is the 3 x 3 diagonal matrix with the columns of A’s lengths squared on the
diagonal.

(b) AT A is the 3 x 3 diagonal matrix with 1,4,9 on the diagonal.



4.4.4
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(b) Any vector and 0 are orthogonal (dot product is 0) but not linearly independent.

(c) For this pick two other vectors independent of ¢; = (1,1,1)/v/3 and apply Gram-
Schmidt, or alternatively find two vectors orthogonal to ¢; (and each other) and normalize
them. For example, g2 = (1,—1,0)/v/2 and ¢3 = (1,1, —2)/V6.

4.4.7

The solution # satisfies QT Q% = QTb but QTQ = I so & = Q7b.

4.4.14

4.4.15

(a) Gram-Schmidt yields ¢; = (1,2, -2), g2 = %(2,1,2), and ¢3 = $(2, -2, —1).
(b) The left nullspace.
(c) 2= (ATA)71AT(1,2,7) = (1,2).
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4.4.22

A=(112), B=(1,-1,0), C = (—-1,-1,1). Completing Gram-Schmidt would also
divide these by their lengths.

4.4.24
(a) One basis for A is the 3 special solutions (—1,1,0,0),(—1,0,1,0),(1,0,0,1) to the
equation x1 + 2 + 3 — x4 = 0.

(b) S is the subspace of vectors perpendicular to the vector (1,1,1,—1), so (1,1,1,—1) is
a basis for S*.

(c) Project onto both subspaces S, S*: by = %(1, 1,1,3) and be = %(17 1,1,-1).

4.5.1
det(2A) = 2%det(A) = 16/2 = 8, as by linearity each of the 4 rows multiplied by 2
contributes a factor of 2.
det(—A) = (—1)*det(A) = 1/2 for the same reason.
det(A?) = det(A)det(A) = 1/4.
det(A=Y)det(A) = det(A™1A) = det(I) = 1, so det(A™1) = 1/det(A) = 2.

4.5.3

(a) False. For I 2 x 2, det(I + I) = det(21) = 22det(I) = 4det(I) # det(I) + det(I).
(b) True, by repeated application of |AB| = |A||B.
(c) False. If Ais n x n for n > 1 then det(4A) = 4™det(A) # 4det(A).

0 01 0

(d) False. For A = and B = ,AB—BA =

_(1) ] , which is invertible.
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4.5.4

For J3, exchange rows 1 and 3 to get I. which shows that det(J3) = —1.

For J4, exchange rows 1 and 4 then 2 and 3 to get I, which shows that det(Jy) = (—=1)? = 1.

4.5.8a

1 = det(I) = det(QTQ) = det(QT)det(Q) = det(Q)det(Q) = det(Q)?, and the only possible
determinants det(Q)) which square to 1 are 1 or -1.

4.5.10

If each row of A sums to 0 then A(1,...,1) = 0 so A has nontrivial nullspace and is not
invertible, so det(A) = 0.

If each row sums to 1 then A — I has each row sum to 0, so det(A —I) = 0. det(A) is not

necessarily 1 as the matrix

-2
3 ]has this property but its determinant is 13.

4.5.11

|C||D| = (—=1)"|D||C| where the matrices are n x n. Therefore this statement is only true
when n is odd.

4.5.12

For 2 x 2 matrices, det(cA) = c?det(A) not cdet(A), so det(A™") = L = m.

4.5.13 (first matrix)

1 1 1
U=|0 1 1 [sodet(A)=1 as the product of the pivots.
0 0 1
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4.5.14 (first matrix)

1 230
2 1
U= 8 0 g 5 so det(A) =1x2%3 %6 = 36.
0 0 06
4.5.15 (first matrix)
101 201 301
The first two steps of elimination reduces the first matrix to 1 1 1 |, which
2 2 2

clearly does not have linearly independent rows so its determinant is 0.

4.5.28

(a) For A, B square this is true as det(A) = 0 and det(AB) = det(A)det(B) = 0.

(b) This is false when a row exchange is used in reducing A to upper triangular form.
(c) False. det(2I — I) = det(I) = 1 but det(2I) — det(I) =22 —1 = 3.

(d) True. det(AB) = det(A)det(B) = det(B)det(A) = det(BA).



