
HW9 Solutions

Math 2310

5.2.7

There are 5! = 120 permutation matrices and swapping the first two rows gives a 1 to 1

pairing of those with determinant +1 and those with determinant -1, so exactly 60 have

determinant +1.
0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

requires 4 row exchanges to reach the identity.

5.2.9

By the permutation formula, any matrix of +1s and -1s has as its determinant a sum of

6 terms, each of which is +1 or -1. Any such matrix can be reached by starting with

the matrix of all +1s and turning some of its entries negative. The determinant of the

matrix with all +1s is 1+1+1-1-1-1 = 0, as in the sum there are 3 positive terms and 3

negative terms. Every time an entry in the matrix has its sign changed, one of the first

three terms in this sum and one of the last three terms in this sum changes sign. That

means either a +1 turns to a -1 and a -1 turns to a +1 in the determinant sum, two -1s

turn into +1s, or two +1s turn into -1s. That means that from the original 3 +1s and 3

-1s in the determinant of the matrix with all +1s, changing a sign in one of the matrix

entries moves that sum to 5 +1s and one -1, to one +1 and 5 -1s, or leaves it at 3 +1s and

3 -1s. These are the only reachable positions, as from 5 +1s and a single -1 there are no

two -1s in the sum that can be flipped by changing a sign in the matrix (and similar for

the opposite case). Therefore the only possible determinants of such a matrix are 1-5=-4,

3-3=0, and 5-1=4.
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5.2.27

The cofactor formula gives det(A) = a11C11 + a12C12 + · · · , where C11 does not depend on

a11, so the derivative of this expression as a function of a11 is the constant C11.

5.2.34

(a) The first two and last three rows are the same.

(b) This question amounts to showing that every possible permutation of positions in the

matrix includes at least one zero. Any permutation contains a 1 in exactly one position in

column 5, exactly one position in column 4, exactly one position in row 1, and exactly one

position in row 2. This accounts for 2 to 4 of the 1s in the permutation matrix (depending

on if there’s overlap between those specified by row and by column). Regardless, there

is then at least one more 1 that is not in row 1, row 2, column 4, or column 5, and the

corresponding position in A is therefore zero.

5.3.16

(a) det

[
3 2

1 4

]
= 10.

(b-c) Each of these triangles is half of the parallelogram in (a), so they both have area 5.

5.3.19

The corresponding matrices are transposes so they have the same determinant, which is 4.

5.3.31

We want to compute (u× v) · w. u× v = (0, 0, 10) and (0, 0, 10) · (1, 2, 2) = 20.
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5.3.32

det

 2 4 0

−1 3 0

1 2 2

= 12 + 0 + 0 - 0 - (-8) - 0 = 20.

6.1.19

(a) The rank of B is the number of nonzero eigenvalues, 2.

(b) The determinants of both B and BT are 0*1*2=0, so their product also has determinant

0.

(c) Eigenvalues are not able to be determined for general products of matrices.

(d) B2 has eigenvalues 02, 12, 22, so 0, 1, 4. B2 + I then has eigenvalues 1, 2, 5, and finally

its inverse has eigenvalues 1, 12 ,
1
5 .

6.1.33

Au = uvTu = u(vTu), where λ1 = vTu. Since the determinant of uvT is 0, the other

eigenvalue must be 0, so the trace is λ1 + λ2 = vTu+ 0 = u1v1 + u2v2 as expected.

6.1.34

the eigenvalues solve 0 = λ4 − 1 = (λ2 − 1)(λ2 + 1) = (λ + 1)(λ − 1)(λ + i)(λ − i),

so the eigenvalues are 1, i,−1,−i. The eigenvectors for 1 are multiples of (1, 1, 1, 1), the

eigenvectors for -1 are multiples of (1,−1, 1,−1), the eigenvectors for i are multiples of

(1,−i,−1, i), and the eigenvectors for −i are multiples of (1, i,−1,−i).

6.1.35

P always has determinant ±1. The pivots are always 1 (after row exchanges). The diagonal

has exactly three, one, or zero 1s, so the trace is always 3, 1, or 0. The eigenvalues of the

identity are all 1, the eigenvalues of a permutation one row swap from the identity have

0 = (1 − λ)(λ2 − 1) = −(λ − 1)(λ − 1)(λ + 1) so λ = 1, 1,−1, and the eigenvalues of a
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permutation two row swaps from the identity have 0 = −λ3 + 1 = (1 − λ)(λ1 + λ + 1) so

λ = 1, −1±
√
−3

2 . Therefore the four numbers are ±1, −1±
√
−3

2 .

6.2.4

(a) False, the eigenvalues can still have 0s.

(b) True

(c) True

(d) False, this tells us nothing about the eigenvectors of X.

6.2.14

The matrix A is not diagonalizable because the rank of A − 3I is 1 not 0. Changing any

entry except the 1 makes A diagonalizable.

6.2.26

Not every square matrix has n linearly independent eigenvectors because not all of the

column space is necessarily spanned by eigenvectors, and also the nullspace and column

space can intersect.

6.2.29

AB = XΛ1X
−1XΛ2X

−1 = XΛ1Λ2X
−1 = XΛ2Λ1X

−1 = XΛ2X
−1XΛ1X

−1 = BA, as

multiplication of diagonal matrices is commutative.

6.2.31

(XΛX−1 − λ1I)(XΛX−1 − λ2I) · · · (XΛX−1 − λnI)
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can be rewritten using (XΛX−1 − λiI) = X(Λ − λiI)X−1 to get

X(Λ − λ1I)(Λ − λ2I) · · · (Λ − λnI)X−1

Each of the parenthesized matrices is a diagonal with a zero in the appropriate entry:

Λ − λiI is 0 in the ith diagonal element, so their product is 0 in every entry, making the

entire product 0.

6.2.37

If B = A2, BA1A2B
−1 = A2A1A2A

−1
2 = A2A1 (B = A−11 would also work).

6.2.38

B is the eigenvector matrix and A must have n independent eigenvectors.


