NUMBERS

We begin with results about the integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$. On this sheet, "number" means integer. Some statements refer to the natural numbers $\mathbb{N} = \{0, 1, 2, \dots\}$ or the positive integers $\mathbb{Z}^+ = \{1, 2, \dots\}$.

Definition 1. For two integers d, n we says that d divides n if there is an integer k such that $d \cdot k = n$. Here, d is called the divisor, n is the dividend, and k is the quotient. (Alternatively, we say that d is a factor of n, or n is a multiple of d.)

We write $d \mid n$ if d is a divisor of n or $d \nmid n$ if it is not.

Definition 2. An integer is **even** if it is divisible by 2, otherwise, it is **odd**.

Remark 1. The notation $d \mid n$ signifies a relationship between the two numbers. It is different from the fraction d/n, which is a rational number. A question like "Does 2 divide 5?" makes sense, but "Does 2/5?" does not.

Exercise 3. (Parity and sign) Prove or disprove.

- (1) If a number is even, then its negative is even. If a number is odd, then its negative is odd.
- (2) If $d \mid a$, then $-d \mid a$ and $d \mid -a$. In addition, $d \mid |a|$. (Recall that the absolute value |a| of a is a if $a \ge 0$ and -a if a < 0.)

Exercise 4. (Parity and addition) Prove or disprove.

- (1) The sum of two evens is even. The difference of two evens is even.
- (2) The sum of two odds is odd. The difference of two odds is odd.
- (3) Where $a, b \in \mathbb{Z}$, the number a + b is even if and only if a b is even.
- (4) Generalize the first item to arbitrary divisors.

Exercise 5. (Parity and multiplication) Prove the first, and prove or disprove the second.

- (1) The product of two evens is even. Generalize to any divisor.
- (2) The quotient of two evens, if it is an integer, is even.

Exercise 6. (Divisibility properties) Let d, m, and n be integers. Prove each statement.

- (1) (Reflexivity) Every number divides itself.
- (2) Every number divides zero. The only number that 0 divides is itself.
- (3) (Transitivity) If $d \mid n$ and $n \mid m$, then $d \mid m$. That is, if n divides m, then so do n's divisors.
- (4) (Cancellation) For $d, n \in \mathbb{Z}$, if for some nonzero integer a we have $ad \mid an$, then $d \mid n$. Conversely, if $d \mid n$, then $ad \mid an$ for all $a \in \mathbb{Z}$.
- (5) (Comparison) For $d, n \in \mathbb{Z}^+$, if n is a multiple of d, then $n \ge d$.
- (6) Every number is divisible by 1. The only numbers that divide 1 are 1 and -1.
- (7) The largest divisor of a is |a|, for $a \in \mathbb{Z}$ with $a \neq 0$.
- (8) Every nonzero integer has only finitely many divisors.

Exercise 7. What conclusion can you make if $a \mid b$ and $b \mid a$?

Exercise 8. Suppose that $a, b, c \in \mathbb{Z}$.

- (1) Prove that if $a \mid b$, then $a \mid bc$ for all integers c.
- (2) Prove that if $a \mid b$ and $a \mid c$, then a divides the sum b + c and the difference b c.
- (3) (Linearity) Prove that if $a \mid b$ and $a \mid c$, then a divides any $i \cdot b + j \cdot c$, where $i, j \in \mathbb{Z}$.