FUNCTIONS AND CARDINALITY

Definition 1. Let A and B be two nonempty sets. A function f from A to B (written as $f:A\to B$) is a subset $f\subset A\times B$ such that for all $a\in A$, there exists a unique $b\in B$ such that $(a,b)\in f$ (this condition is written as f(a)=b).

Exercise 2. Describe the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = 2n as a subset of $\mathbb{Z} \times \mathbb{Z}$.

Definition 3. Let $f: A \to B$ be a function. The **domain of** f is A. If $X \subset A$, the **image of** X **under** f is the set

$$f(X) := \{ b \in B \mid f(x) = b \text{ for some } x \in X \}.$$

If $Y \subset B$, then the **preimage of** Y **under** f is the set

$$f^{-1}(Y) = \{ a \in A \mid f(a) \in Y \}.$$

Definition 4. (Basic Properties) A function $f: A \to B$ is:

- surjective (a.k.a. onto) if for every $b \in B$, there exist some $a \in A$ such that f(a) = b.
- injective (a.k.a. one-to-one) if for all $x, y \in A$, if f(x) = f(y), then x = y.
- bijective (a.k.a. a one-to-one correspondence) if it is surjective and injective.

Exercise 5. Are the following functions injective? Surjective?

- Let $f: \mathbb{N} \to \mathbb{N}$ be the function defined by $f(n) = n^2$.
- Let $f: \mathbb{N} \to \mathbb{N}$ be the function defined by f(n) = n + 2.
- Let $f: \mathbb{Z} \to \mathbb{Z}$ be the function defined by $f(x) = x^2$.
- Let $f: \mathbb{Z} \to \mathbb{Z}$ be the function defined by f(x) = x + 2.

Exercise 6. If $f: A \to B$ is bijective, then there exists a bijection $g: B \to A$.

If two sets are in bijection with each other, we usually consider them to be identical as sets.

Notation 7. For any $n \in \mathbb{N}$, we define $[n] = \{1, 2, \dots, n\} \subset \mathbb{N}$. Furthermore, we set $[0] = \emptyset$.

Definition 8. We say that a set A is **finite** if $A = \emptyset$ or if there exists an $n \in \mathbb{N}$ and a bijective correspondence between A and [n]. If this is the case, we say that the **cardinality of** A is n, and write this as |A| = n. If A is not finite, we say that A is **infinite**. If there is a bijection between two sets A and B, we say that A and B have the same cardinality (write this as |A| = |B|).

Exercise 9. Let A, B, and C be sets and suppose that there is a bijection between A and B, and a bijection between B and C. Then there is a bijection between A and C.

The following two results show that the cardinality of a finite set is well-defined.

Theorem 10. (Pigeonhole Principle) Let $n, m \in \mathbb{N}$ such that n < m. There does not exist an injective function $f : [m] \to [n]$.

Theorem 11. Let A be a finite set and suppose that |A| = m and |A| = n. Then m = n.

Exercise 12. Let A and B be finite sets. If $A \subset B$, then $|A| \leq |B|$.

Exercise 13. (Inclusion/Exclusion Principle) Let A and B be two finite sets. Then

$$|A \cup B| + |A \cap B| = |A| + |B|.$$

Exercise 14. If A and B are two finite sets, then $|A \times B| = |A| \cdot |B|$.

Exercise 15. How many subsets does the empty set have? How many subsets does [n] have?

Exercise 16. Show that if A is a finite set, then $|\mathcal{P}(A)| = 2^{|A|}$.