GRAPHS

Definition 1. An (undirected) graph is a relation E on a set V that is symmetric and not reflexive. The elements of V are called **vertices**, and the elements of E are called **edges**. We often write the graph as $G = (V, E)$.

Many graphs can be drawn in the plane where vertices correspond to points and we draw a line segment between vertices when an edge exists.

Definition 2. Two vertices $v, w \in V$ are said to be adjacent if $(v, w) \in E$. We say that an edge $(v_1, v_2) \in E$ is incident to its endpoints $v_1, v_2 \in V$. Given a vertex $v \in V$, the number of edges incident to it is called its **degree** and is denoted by $deg(v)$.

Proposition 3. Let $G = (V, E)$ be a graph. Then $|E| = \frac{1}{2}$ $\frac{1}{2} \sum_{v \in V} \deg(v)$.

Definition 4. Given $v, w \in V$, a (v, w) -walk in G is an alternating sequence of vertices and edges, starting with v and ending with w , such that any two consecutive vertices are distinct and each edge is incident to the two vertices it lies between in the sequence.

We say the graph G is **connected** if there is a (v, w) -walk between any two distinct $v, w \in V$.

We say a (v, w) -walk is a **path** if all vertices on the walk are distinct. If $v = w$ but all other vertices are distinct, we say that the (v, w) -walk is a cycle.

A graph G is called a forest if it contains no cycles. A connected forest is called a tree.

Proposition 5. If every vertex in a finite graph G has degree at least 2, then G contains a cycle.

Theorem 6. Let G be a finite tree. Then $|E| = |V| - 1$. (Hint: use induction and the previous proposition).

Definition 7. A graph G is **planar** if it can be drawn in the plane such that no two edges intersect each other (except possibly at endpoints). The regions F in the plane that are created by a plane drawing are called faces.

Proposition 8. Let $G = (V, E, F)$ be a connected planar graph. Assume that $|V| \geq 3$. Then $|E| \geq \frac{3}{2}|F|.$

Theorem 9. (Euler's formula) Let $G = (V, E, F)$ be a connected planar graph. Then

 $|V| - |E| + |F| = 2.$

(Hint: induct on faces; use the theorem above; for inductive step, consider an edge on a cycle)

Theorem 10. Let $G = (V, E, F)$ be a planar graph and assume that $|V| \geq 3$. Then $|E| \leq 3|V| - 6$. (Hint: Assume WLOG that it's connected, use previous two results.)

Theorem 11. Let $G = (V, E, F)$ be a planar graph such that $|V| \geq 3$ and no face of G is a triangle (i.e. bounded by three edges). Then $|E| \le 2|V| - 4$.

Proposition 12. Every planar graph has a vertex v such that $deg(v) \leq 5$. (Hint: degree + Euler)

Definition 13. The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed to color the vertices of G so that adjacent vertices have different colors.

Theorem 14. Every planar graph has chromatic number at most 6. (Hint: Use Prop. 12)

Remark 1. It turns out that every planar graph has chromatic number at most 4. This is one of the great triumphs of late 20th century mathematics.