Preliminary Exam $#1$

INSTRUCTIONS

- *•* You have 50 minutes.
- The exam is closed book, closed notes, no calculators. However, you are allowed a one-page (front and back) "cheat sheet." If you use such a sheet, submit it with your exam. You are free to apply any result that we covered in class or on the homeworks, unless the problem explicitly tells you to use a certain approach. You do not need to cite the name and number of such results, just be clear on which result you are using.
- Mark your answers ON THE EXAM ITSELF (in particular, no exam books or loose sheets of paper). If you are not sure of your answer, you may wish to provide a *brief* explanation so that we can at least know what you are trying to do. For full credit, be sure to justify your steps.
- *•* Write your name on the top of each page with a problem listed.
- Questions are not given in order of difficulty. Make sure to look ahead if stuck on a particular question.

For staff use only				
				$\rm Total$

For staff use only

1. (10 points) Contrapositive and Negation

Consider the statement

" $\forall x \in \mathbf{R}, (x \geq 3) \Rightarrow (x^2 > 5)$ "

The following statements do not require proof, but be absolutely sure of your answer, as no partial credit will be awarded. (Think about the truth tables, if that helps.)

- (a) (5 points) Write the contrapositive of the statement.
- (b) (5 points) Write the negation of the statement.

Solution. (a) $\forall x \in \mathbf{R}, (x^2 \leq 5) \Rightarrow (x < 3)$

(b) $\exists x \in \mathbf{R}$ such that $x \ge 3$ and $x^2 \le 5$.

 \Box

2. (20 points) Sets and Power Sets.

Given a set A , let $P(A)$ denote its powerset.

- (a) (10 points) Let *S* and *T* be sets. Show that $P(S) \cup P(T) \subseteq P(S \cup T)$.
- (b) (5 points) Show that it is not always the case that $P(S) \cup P(T) = P(S \cup T)$.

(c) (5 points) Is it ever true that $\mathcal{P}(S) \cup \mathcal{P}(T)$ and $\mathcal{P}(S \cup T)$ are equal? If so, describe precisely when this occurs. If not, prove that it is impossible.

Proof. (a) Let $U \in \mathcal{P}(S)$, so $U \subseteq S$. Since $S \subseteq S \cup T$, we have

$$
U \subseteq S \subseteq S \cup T
$$

and so $U \subseteq S \cup T$, that is, $U \in \mathcal{P}(S \cup T)$. The proof for $U \in \mathcal{P}(T)$ is identical.

(b) Consider the case where $S = \{1\}$ and $T = \{2\}$. Then $\{1,2\} \in \mathcal{P}(S \cup T)$, but it is not is $\mathcal{P}(S)$ or $\mathcal{P}(T)$.

(c) Yes, there is such a case. We will show that $P(S) \cup P(T) = P(S \cup T)$ if and only if $S \supseteq T$ or $T \subseteq S$.

We'll prove the "if" direction first. Suppose $S \subseteq T$. (The case $T \subseteq S$ is identical, so we can reduce to the case of $S \subseteq T$. This is usually done by saying "We can assume without loss of generality that $S \subseteq T$.") Then $S \cup T = T$ and so

$$
\mathcal{P}(S \cup T) = \mathcal{P}(T) \subseteq \mathcal{P}(S) \cup \mathcal{P}(T).
$$

Combined with part (a), we have $P(S) \cup P(T) = P(S \cup T)$.

Conversely, suppose that $P(S \cup T) \subseteq P(S) \cup P(T)$. Suppose for the sake of contradiction that $S \nsubseteq T$ and $T \nsubseteq S$. In other words, there exists an $x \in S$ that is not in *T* and a $y \in T$ that is not in *S*. Then $\{x, y\} \in \mathcal{P}(S \cup T)$, but $\{x, y\} \notin \mathcal{P}(S)$ and $\{x, y\} \notin \mathcal{P}(S)$, which is a contradiction. but $\{x, y\} \notin \mathcal{P}(S)$ and $\{x, y\} \notin \mathcal{P}(S)$, which is a contradiction.

- (a) (10 points) Show that that $n! < n^{n-1}$ for $n \geq 3$.
- (b) (10 points) Show that for any $n \geq 4$, we can obtain exactly *n* dollars using only \$2 bills and \$5 bills.

Proof. (a) We prove this by induction on $n \geq 3$.

Base case $(n = 3)$ *:* We have $6 = 3! < 3^{3-1} = 3^2 = 9$ by inspection.

Inductive step: Assume that our statement holds for *n* and want to show that it holds for $n + 1$. By the inductive hypothesis, we have $n! < n^{n-1}$. Multiplying both sides by $(n + 1)$, we obtain

$$
(n+1)! = n!(n+1) < n^{n-1}(n+1) < (n+1)^{n-1}(n+1) = (n+1)^n
$$

where the last inequality follows from the fact that $n^{n-1} < (n+1)^{n-1}$ for any $n > 1$.

(b) The simplest way to obtain a correct proof of this statement is to use two-step induction (or strong induction) on $n \geq 4$. We'll need more than one base case here, as a result.

Base cases: We note that $4 = 2 + 2$ and $5 = 5$, and so we can obtain 4 and 5 dollars using only \$2 bills and \$5 bills.

Inductive step: Suppose that our statement holds true for $n-1$ and n, we want to show that it also holds for *n* + 1. By our inductive hypothesis, we can obtain exactly *n* - 1 dollars using only \$2 and \$5 bills. By adding a \$2 bill to this quantity, we obtain *n* + 1 dollars using only \$2 and \$5 bills. a \$2 bill to this quantity, we obtain $n + 1$ dollars using only \$2 and \$5 bills.

4. (20 points) True/False Short Answers about Functions

If True, justify your answer with a proof. If false, give a counterexample (and show why it is indeed a counterexample). (You do not need to salvage false statements.)

- (a) Let $n \in \mathbb{N}$ and recall that $[n] = \{1, 2, \ldots, n\}$. If $f : \mathbb{N} \to [n]$ is a function, then f is surjective.
- (b) Let $f: X \to Y$ be a function. If *A* and *B* are subsets of *X* and $A \cup B = X$, then $f(A) \cup f(B) = Y$.
- (c) If $f: X \to Y$ is injective, then for any subsets $A, B \subset X$, we have $f(A \cap B) = f(A) \cap f(B)$.
- (d) (The converse of (c)) Let $f : X \to Y$ be a function with property that $f(A \cap B) = f(A) \cap f(B)$ for all subsets $A, B \subset X$. Then f is injective.

Proof. (a) False. Consider the constant map $f(x) = 1$ for all $x \in \mathbb{N}$.

(b) False, because *f* is not necessarily surjective. (Consider the constant function as above for a concrete counterexample.)

(c) True. Suppose $x \in A \cap B$. Then $x \in A$ and so $f(x) \in f(A)$. Similarly, $x \in B$ and so $f(x) \in f(B)$. Therefore, $f(A \cap B) \subseteq f(A) \cap f(B)$.

For the other inclusion, suppose that $y \in f(A) \cap f(B)$. Then there exists an $x_1 \in A$ such that $f(x_1) = y$ and an $x_2 \in B$ such that $f(x_2) = y$. Since $f(x_1) = y = f(x_2)$ and *f* is injective, we must have $x_1 = x_2$ and so $x_1 \in A \cap B$. Hence $y = f(x_1) \in f(A \cap B)$.

(d) True. Suppose for the sake of contradiction that *f* is not injective. We will construct subsets $A, B \subseteq X$ such that $f(A \cap B) \neq f(A) \cap f(B)$. Since *f* is not injective, there exist points $x_1 \neq x_2 \in X$ such that $f(x_1) = f(x_2)$. Let $A = \{x_1\}$ and $B = \{x_2\}$, so $A \cap B = \emptyset$. However, $f(A) \cap f(B) = \{f(x_1)\} \neq \emptyset$, giving us a contradiction.
Thus, f must be injective. Thus, *f* must be injective.