
ANSWERS TO CLASS ASSIGNMENTS (WEEK OF 05/05

AND 05/12)

Here are some solutions and commentary to the class assignments from
the weeks of May 5 and 12. These are not the only way to do it, and they
are not even “model solutions”—your solution may be better in a number
of ways, and these might not necessary be “full credit” answers (especially
with respect to the meta-mathematical questions)—but they give an idea of
what we’d consider an acceptable answer to certain questions.

Surreal Numbers, Question 7. Show that 1
2 + 1

2 = 1.

Proof. This is a good exercise to test your logic and induction skills, as it
involves carefully stepping through chains of inequalities.

Recall that 1
2 = {0|1} (created on day 2). By adding these together, we

obtain
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where for the left, we are using that x + 0 = x for all surreal numbers x.
(Prove it if you haven’t done so!) Write α = 1 + 1

2 . We know in our mind

that it should be 3
2 , but we haven’t proven this yet. One can show that

α = 3
2 = {1|2} and use the “simplicity theorem” to show that 1

2 < 1 < 3
2 ,

giving us the result, but here is a more elementary and direct approach that
doesn’t rely on these general results.

Let’s first show that 1
2 + 1

2 ≥ 1. This holds unless we have α ≤ 1 or
1
2 + 1

2 ≤ 0, so we need to check these:

• Is 1 ≥ α? Yes, unless 1 ≤ αL for some αL (because there is no 1R,
the “higher” condition for ≥ is vacuous). But one αL is 1 + 0 = 1.
Thus, we conclude that 1 6≥ α.
• If 0 ≥ 1

2 + 1
2? Yes, unless 0 ≤ (12 + 1

2)L for some (12 + 1
2)L (because

there is no 0R). But since 0 ≤ 1
2 + 0 = 1

2 and 1
2 is a (12 + 1

2)L, we

have 0 6≥ 1
2 + 1

2 .

Thus, we have 1
2 + 1

2 ≥ 1.

Checking that 1
2 + 1

2 ≤ 1 is completely analogous. �

Remark. Note that there are merits to both an elementary approach and
in proving a general result and then applying it. The former is certainly
more concrete and is probably necessary to go through to find the patterns
to deduce the general result, but going through the details can sometimes
confuse as much as illuminate. (The main goal of calculations and working
through examples is to provoke questions and lead to understanding.) The
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latter is how we should mark the progress that we’ve made, by proving a
claim that encapsulates the knowledge we’ve gathered and the key properties
we’ve identified into a definitive result that we can apply and understand
even if we step away from being immersed in the problem and so forget
about our more explicit investigations. However, the general results can be
rather opaque and “brittle,” and hard to extend to new situations if you
have not done the legwork of understanding examples or what really goes
into the proof.

For example, there’s a wide gulf between knowing each of how to take
derivatives of polynomials, how to apply the fundamental theorem of calcu-
lus, and understanding the (relatively complicated) definition of a derivative.
If you only know the first, it’s hard to see how to take the derivative of a
general differentiable function. If you only know the second, it’s hard to
see how this applies to a new situation you haven’t seen in class (e.g. non-
differentiable functions, an application outside of the ones that are told to
you in physics or economics). But if you really understand the third, you
really are grasping something deep about calculus and it is easy to “get”
the first two. However, how can you test if somebody really understands
what a derivative is? You really can’t—at least, not in a constrained weekly
homework or testing environment—and so you have to settle for testing for
the former two, which are the bare minimum needed for classes that build
upon calculus—and just hope that those who really care will go the extra
mile or perhaps learn it eventually if they need it.

For a lot of undergraduate math courses—including much of the content
for this class—one can easily get away with only tackling the formal parts,
as those are primarily what’s tested and what tends to be uniform for every-
body in the class. Indeed, being comfortable with such abstractions is one of
the key goals of math courses. However, do not be misled into thinking that
what’s “testable” is what’s most important. Just memorizing the proofs of
formal results (or worse, just the “big theorems”) without taking the time
to work out examples, make lots of mistakes, and internalize the concepts
leads to a very shallow understanding that is revealed when you actually
have to apply your knowledge or even actually compute something.
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...and Beyond, Question 4. What is the nimber associated with the
bridge standoff game of length 8? Of length 21? For arbitrary n?

Solution. Probably the best way to approach this problem was to just start
with the smallest examples, identify their nimbers, and then try to general-
ize. From the first of n, we can work things out recursively:

B(3, 0) = {} = ∗0
B(3, 1) = {∗0} = ∗1
B(3, 2) = {∗0, ∗1} = ∗2
B(3, 3) = {∗0, ∗1, ∗2} = ∗3
B(3, 4) = {∗1, ∗2, ∗3} = ∗0

and we from this we can see that the nimbers are periodic with period 4, so

B(3, n) = ∗(n mod 4)

where “n mod 4” denotes the unique integer k ∈ {0, 1, 2, 3} such that 4 |
(n− k).

There are many ways to prove this. For one, use the observation that

B(3, k + 1) = {B(3, k − 2), B(3, k − 1), B(3, k)}
so we have B(3, k+1) ∈ {∗0, ∗1, ∗2, ∗3} and then you prove that B(3, k+1) =
∗(B(3, k) + 1 mod 4) just by induction. �

Remark. An interesting fact about playing multiple instances of the bridge
standoff game simultaneously—these are variants of the game Nim, whence
the name “nimbers”—is that if you don’t know the strategy, it is difficult
to tell who has the stronger position. For example, suppose that we are
playing three instances B(3, 5), B(3, 6), B(3, 2). We have

B(3, 6) +B(3, 5) +B(3, 2) = ∗2 + ∗1 + ∗2 = ∗1
as ∗n+ ∗n = 0 for all n, and so the first player has a winning strategy. To
find a winning move, the first player must find a way to move to a position
with value ∗0, such as jumping one step in the second game (moving from
B(3, 5) to B(3, 4)). From here, one can show that the first player has a
winning response to any move by the other play (just counter by forcing a
move to a position with value ∗0).


