RELATIONS

Definition 1. Let *A* and *B* be two sets. A (binary) relation on *A* and *B* is a subset $R \subseteq A \times B$. If $a \in A$ and $b \in B$ are such that $(a, b) \in R$, then we say that *a* is (**R**-)related to *b* (written as $a \sim_R b$ or simply $a \sim b$ when it it clear what the relation is). If A = B, we often just say that *R* is a (binary) relation on *A*.

Examples 2. Consider the set $S = \{1, 2, 3\}$. Since $S \times S$ has nine elements, $\mathcal{P}(S)$ has $2^9 = 512$ elements, so there are 512 binary relations on S and S. Familiar examples include equality $R_{=} = \{(1,1), (2,2), (3,3)\}$, ordering by size $R_{<} = \{(1,2), (1,3), (2,3)\}$, and divisibility $R_{|} = \{(1,1), (1,2), (1,3), (2,2), (3,3)\}$.

Question 3. Why is a function a certain kind of relation? How can you characterize which relations are functions?

Most of these relations aren't so interesting, so we focus our study on ones with certain properties.

Definition 4. A relation *R* on a set *A* is said to be

- reflexive if $a \sim a$ for all $a \in A$;
- symmetric if $a, b \in A$ and $a \sim b$, then $b \sim a$;
- transitive if $a, b, c \in A$ are such that $a \sim b$ and $b \sim c$, then $a \sim c$.

Example 5. The relation < on \mathbb{R} is not reflexive, not symmetric, but is transitive. The relation of divisibility in \mathbb{N} is reflexive, *anti*-symmetric (i.e. $a \not\sim b$ implies $b \sim a$ and vice versa), and transitive.

Question 6. Let P be the set of people at a party and define a relation R on P, where $(x, y) \in R$ if and only if x knows the name of y. Describe what it would mean for R to be reflexive, symmetric, or transitive.

Question 7. If a relation is symmetric and transitive, is it necessarily reflexive?

Definition 8. A relation R on a set A is an **equivalence relation** if R is reflexive, symmetric, and transitive. If $a, b \in A$ such that $a \sim b$, we say that a and b lie in the same **equivalence class**. We write [a] for the equivalence class containing a (with respect to the relation R).

Example 9. What's an example of an equivalence relation that is not equality?

Question 10. Let A be a set of 4 elements. How many relations are there on A? Reflexive relations? Symmetric relations? Functions from A to A? Equivalence relations?

Definition 11. A partition of a nonempty set A is a subset S of $\mathcal{P}(A)$ such that

- (1) $\emptyset \notin S$;
- (2) If $x, y \in S$, then either x = y or $x \cap y = \emptyset$; and
- (3) The union of all elements in S equals A.

Equivalently, it a decomposition of A into a disjoint union of nonempty subsets.

Theorem 12. (Fundamental Theorem of Equivalence Relations) Let A be a nonempty set. If R is an equivalence relation on A, then the equivalence classes (with respect to R) form a partition of A. Conversely, if S is a partition of A and we define a relation R on A such that $a \sim b$ if and only a and b are in the same set in the partition, then R is an equivalence relation on A.

Question 13. Consider the relation on the set [6] given by

 $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (4,5), (5,4), (5,5), (6,6), (5,6), (6,5), (4,6), (6,4).\}$

Check that it is an equivalence relation. What is the partition corresponding to R?