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Recursions and Colored Hilbert Schemes
Background

The Problem

Object of Study: The Hilbert scheme of type (mq,m1).

Long Term Goal: Find the Poincaré polynomial of the punctual
Hilbert scheme of type (mg, m).

Why? The Poincare polynomial is a topological invariant, meaning
it doesn't change with stretching and bending.

Short Term Goal: Count the points of the punctual Hilbert
scheme of type (mg,my).

Why? We can use this to find a generating function, which we can
then use in the Weil conjectures, to find the Poincaré polynomial.
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What is the punctual Hilbert scheme of type (mg, my)?

We'll first introduce some background:
© Monomial ideals
@ Young diagrams
© Group actions

@ Colored Young diagrams
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Ideals

Definition

An ideal I C k[z,y] for a field k is a set of polynomials, but with a
few rules attached:

e a,f el impliesa+p8el
@ €l and m € k[z,y| impliesa-m € I

Theorem

| A

Every polynomial ideal can be written as

(g1, 9n) ={fro1 + -+ fagn | fi € klz, 9]},

which is the set of all k[z,y] linear combinations of the g;. These
gi are called the generators.
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Monomial ideals

Definition
A monomial ideal is an ideal generated by monomials.

Example
o (z) ={Azx|A € k[z,y|}
o (z°,y%) = {Az® + By® | A, B € k[z,y]}

are monomial ideals within the polynomial ring k[z, y].
o (x+y) ={Alx+y)| A€ klzx,y]}

is not a monomial ideal.

A\
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Young diagrams

A Young diagram is a visual representation of a monomial ideal.

Example

We'll construct a Young diagram for the monomial ideal
(z*, 2y, zy®, y*) C k[z,y]
y

Y

zy
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Group actions

Our Zo group action is defined by x — —x, y — —y

Example

Under the given transformation:

1=12%"— (—2)°(—y)° =1, Sl
x3y5 — (_x)3(_y)5 — $3y57 a:3y5 — x3y5
y* =%’ = (—2)°(-y)° = ¢, Sy =y

and in general, z%® — (—1)2bxaqb
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Colored Young diagrams

We can combine the Young diagram and the group action to
“color the Young diagram.”
Procedure:

© Draw the Young diagram as before

@ If the monomial for a box maps to itself, we “color” the box
with a 0

© |If the monomial for a box maps to the negative of itself, we
“color” the box with a 1
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Example: coloring a Young diagram

Recall our previous ideal, (z*, 2%y, zy®, y*) C k[z, y].
We can see that 1 — 1, x — —z, y — —y, xy — Yy, etc.

yt . ... y!

1
ol=[o]H]

==
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And finally... the punctual Hilbert scheme

The punctual Hilbert scheme of type (mg, m;) is defined as

mo,m kj Y
Hilb{"0"™ 2 = {I C k[z,y] ‘ [ny] ~ mopo + mipr, V(I) = 0}

where k = IF, is a finite field of order q. But the subset of

Hilbgm”ml)k:2 made of monomial ideals looks like

{Young diagrams with mg 0’s and m; 1’s}
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Example: punctual Hilbert scheme of type (4,5)

Recall the monomial ideal (z*, 22y, zy3, y*) C k[z,y].

A

Y

O»—*O»—t[
e =l

0[1]

T

By definition, the ideal <a:4,ac2y,a;y3,y4> is in Hilbé4’5)k2, since
the ideal has 4 0's and 5 1's when represented as a colored Young
diagram under our group action.
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Stratified Hilbert schemes

The stratified punctual Hilbert scheme of type (mq, m1), (do, d1),
written Hilb{"0"1 ) (0412 i 5 subset of Hilb{™ ™ k2. The
strata is determined by the first box outside the Young diagram in
each row.

@ dy = number of those boxes containing zero

@ d; = number of those boxes containing one.
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Stratified Hilbert scheme example

A
Y 110
e (4,5),(3,1 0[1]0
<y4,xy3,x2y,x4)€Hllbé )3 2 17011
0[1]0]1]0]
%

Hﬂb[()mo’ml)k:ZZ U Hﬂbémo’ml)’(do’dl)k;Q
do,d12>0
= #Hilb(()mo’ml)k2 = Z #Hﬂb((]mo’ml)’(do’dl)kQ
do,d1>0
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Example

y‘ y‘
110
0[10 — (1’[1)
101
0[1]0]1]0] 0l1[0]1]
X
a5
Y Y
[0]1]0] 0[1]
X X
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Recursion

#Hilb(()mo’ml)’(do’dl)k‘Q = Z qT’,#Hﬂb(()mo_dl ;M1 _do)’(%’d,l)k?
0<d)<d;
0<d’ <dy

/
| —dly=do—dy +(—1) 0191 () +d} +do+d1 ) %2)

where
B {dg ifdy+dy =0 mod 2

“\d, ifdo+di=1 mod?2

Let a,b,c,d € Z>p. The base cases are

#Hﬂb(()o,b>0),(c,d)k2 -0 #Hﬂb(()a’b)’(c>b’d)k2 —0
#Hilb{P>g2 — g #HiILF D002 _ g

#HiIb 002 — 1
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Why (mo — dl, mi1 — do)?

Recurse by “chopping off” first column and sliding diagram
over, then counting which ideals give same diagram

Same as removing last block in each row
0 outside diagram = 1 in last box
1 outside diagram = 0 in last box

Also requires dj < d; and d} < dy in smaller scheme

1]0

0[1]o]1
1{of1]0
o[1]of1|o1]0]|1]

—

[

[

o

—_

1/0[1]0]
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Recursion

#Hilb(()mo’ml)’(do’dl)k‘Q = Z qT’,#Hﬂb(()mo_dl ;M1 _do)’(%’d,l)k?
0<d)<d;
0<d’ <dy

/
| —dly=do—dy +(—1) 0191 () +d} +do+d1 ) %2)

where
B {dg ifdy+dy =0 mod 2

“\d, ifdo+di=1 mod?2

Let a,b,c,d € Z>p. The base cases are

#Hﬂb(()o,b>0),(c,d)k2 -0 #Hﬂb(()a’b)’(c>b’d)k2 —0
#Hilb{P>g2 — g #HiILF D002 _ g

#HiIb 002 — 1
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Some Special Cases

o #Hﬂb(()k,k+1),(k+1,k—1)k2 1

° #Hﬂb(()k,k-l-l),(k-i-l,k—l)kg -1

o #Hilb{"H (M0g2 = gk

o #Hilb{ Oz — gk

o #Hilb{H 02 — [k7 b

o #Hilb MO g2 — |k gk

e
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Future Work

Generating Function

Prove Dr. Gholampour’s conjectured generating function for the
number of points in the punctual Hilbert scheme of n points

> (#Hib M) et =T !

o L = TGt (1 - ¢ ()

DL

meZ
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Future Work

Current future tasks and questions include

@ Complete long term task

e Prove generating function for #Hilb
o Use this to prove generating function for the non-punctual

version of the Hilbert scheme
o Apply Weil conjectures to generating function; get Poincaré

polynomial
@ Study different group actions

mo,m1)
60 1) .2
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