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Introduction

1 The main algebro-geometric object we have been working
with is the Hilbert scheme of points, a moduli scheme

2 Moduli spaces commonly occur in classification problems, like
ours

3 Topological spaces can be classified by discovering topological
properties inherent to the space

Definition

Topological invariant: A property of a topological space that
does not change under stretching and bending of the object.
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Introduction

The topological invariant we will be working with is known as the
Betti numbers.

Informally, the kth Betti number is the number of k
dimensional holes in a topological space

The informal definition only makes sense up to dimension 3,
but Betti numbers have a formal definition that generalizes for
any dimension
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Introduction

How to apply Betti numbers

The Euler number

For a topological space X, the Euler number of X is defined as

χ(X) =
∑
i

(−1)ibi(X).

Euler numbers are a homotopy invariant.

χ(S2) = 1−0+1 = 2

χ(T2) = 1−2+1 = 0
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Introduction

How to apply Betti numbers

Figure: χ(Klein) = 1− 1 + 0 = 0

Figure: χ(T2) = 1− 2 + 1 = 0
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Poincaré Polynomial of Moduli Space via Weil Conjectures

Introduction

How to apply Betti numbers

Poincaré polynomial

The generating function of the Betti numbers for a space X,

p(X, z) =
∑
i

bi(X)zi.

p(Klein, z) = 1z0 + 1z1

p(T2, z) = 1z0 + 2z1 + 1z2
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Poincaré Polynomial of Moduli Space via Weil Conjectures

Introduction

How to acquire Betti Numbers

There are different methods for computing Betti numbers, but
the route that our research employed was the Weil conjectures

The Weil conjectures apply to particular algebraic varieties,
solution sets of polynomials

The crucial aspect for our work is that if you can determine a
zeta function that counts the number of points of the variety
over a finite field you can essentially use that to determine the
Betti numbers of the variety
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Background

The Problem

Find the Poincaré polynomial of the
punctual Hilbert scheme of type (m0,m1)

“the punctual Hilbert scheme of type (m0,m1)” = ???
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Background

What is the punctual Hilbert scheme of type (m0,m1)?

We’ll first introduce some background:

1 Monomial ideals

2 Young diagrams

3 Group actions

4 Colored Young diagrams
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Background

Monomial ideals

Definition

A monomial ideal I ⊂ k[x, y] is a set of polynomials, but with a
few rules attached:

α, β ∈ I implies α+ β ∈ I
α ∈ I and m ∈ k[x, y] implies α ·m ∈ I
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Background

Monomial ideals

We define
〈
x2, y

〉
⊂ k[x, y] to be the set of all polynomials of the

form Ax2 +By for some polynomials A,B ∈ k[x, y].

We’ll accept without proof that
〈
x2, y

〉
⊂ k[x, y] is an ideal.
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Background

Examples of Monomial ideals

Example〈
x3, y3

〉〈
xy, y2, y5

〉〈
x, y, x2y2

〉
are all monomial ideals within the polynomial ring k[x, y].
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Background

Young diagrams

A Young diagram is a visual representation of a monomial ideal.

Example

We’ll construct a Young diagram for the monomial ideal〈
x4, x2y, xy3, y4

〉
⊂ k[x, y]

-
x

6y

p p p p p pp p p p p pp p p p p pp p p p p pp p p p p pp p p p p pp p p p p pp p p p p p
y4

xy3

x2y

x4
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Background

Group actions

Our group action is defined by x 7→ −x, y 7→ −y

Example

Under the given transformation:

1 = x0y0 7→ (−x)0(−y)0 = 1, ∴ 1 7→ 1

x3y5 7→ (−x)3(−y)5 = x3y5, ∴ x3y5 7→ x3y5

y5 = x0y5 7→ (−x)0(−y)5 = −y5, ∴ y5 7→ −y5

and in general, xayb 7→ (−1)a+bxayb
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Background

Colored Young diagrams

We can combine the Young diagram and the group action to
“color the Young diagram.”

Procedure:

1 Draw the Young diagram as before

2 If the monomial for a box maps to itself, we “color” the box
with a 0

3 If the monomial for a box maps to the negative of itself, we
“color” the box with a 1
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Background

Example: coloring a Young diagram

Example

Recall our previous ideal,
〈
x4, x2y, xy3, y4

〉
⊂ k[x, y].

We can see that 1 7→ 1, x 7→ −x, y 7→ −y, xy 7→ xy, etc.

-
x

6y

p p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p p
→

-
x

6y

p p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p p

0

0
1

1

1

1

0
0

1



20/46
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Background

And finally... the punctual Hilbert scheme of type
(m0,m1)

The punctual Hilbert scheme of type (m0,m1) is defined in two
semi-synonymous ways:

Hilb
(m0,m1)
0 k2 =

{
Young diagrams with m0 0′s and m1 1′s

}
OR

Hilb
(m0,m1)
0 k2 =

{
I ⊆ k[x, y] | k[x, y]

I
' m0ρ0 +m1ρ1, V (I) = 0

}
where k = Fq is a finite field of order q.
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Background

Example: punctual Hilbert scheme of type (4, 5)

Example

Recall the monomial ideal
〈
x4, x2y, xy3, y4

〉
⊂ k[x, y].

-
x

6y

p p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p p

0

0
1

1

1

1

0
0

1

By definition, the ideal
〈
x4, x2y, xy3, y4

〉
is in Hilb

(4,5)
0 k2, since

the ideal has 4 0’s and 5 1’s when represented as a colored Young
diagram under our group action.
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The Steps

The problem: restated

The ultimate goal of our research has been to find the Poincaré
polynomial of the punctual Hilbert scheme of type (m0,m1).

(Recall that the Poincaré polynomial is the generating function for
the Betti numbers, which are important topological invariants.)
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The Steps

Plan

1 Prove generating function for #Hilb
(m0,m1)
0 k2

2 Apply Weil conjectures to generating function, get Poincaré
polynomial

3 Use Poincaré polynomial to read off Betti numbers
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Generating Function

Generating Function

Prove Dr. Gholampour’s conjectured generating function for the
number of points in the punctual Hilbert scheme of n points∑
n0,n1≥0

(#Hilbn0,n1) tn0
0 t

n1
1 =

∏
j≥1

1

(1− qj−1(t0t1)j)(1− qj(t0t1)j)

·
∑
m∈Z

tm
2

0 tm
2+m

1
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Cores

Cores

We define a p-core as a staircase-shaped colored Young diagram
with base length p.

Example

· is a 0− core

0 is a 1− core

1
0 1 is a 2− core

0
1 0
0 1 0 is a 3− core

. . .
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Cores

But. . . why should we care about cores?

Answer: We care about cores because each colored Young
diagram corresponds to a unique core.[3]
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Cores

Finding the core of a colored Young diagram

Method:

1 Suppose the boxes are actually physical boxes affected by
gravity pointing towards the lower left corner

2 Remove “border strips” (horizontal or vertical pairs of boxes)
until you can’t remove any more without displacing other
boxes

Example

Start with the Young diagram

1 0
0 1 0 .

We’ll remove border strips one at a time, until we get to a core:

1 0
0 1 0 → 0 1 0 → 0
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Cores

Big example: finding the core

Example

Start with the Young diagram

0 1 0
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1 0 1 0

Again, we’ll remove border strips one at a time, until we get to a
core.
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Cores

Big example: finding the core, cont’d

Example

0 1 0
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1 0 1 0 →

0 1 0
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1 0 →

0
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1 0

→

0
1 0
0 1 0 1
1 0 1 0
0 1 0 1 0 →

0
1 0
0 1
1 0 1 0
0 1 0 1 0 →

0
1 0
0 1
1 0
0 1 0 1 0
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Cores

Big example: finding the core, cont’d

Example

→

0
1 0
0 1
1 0
0 1 0 →

0
1
0
1 0
0 1 0 →

0
1 0
0 1 0

We can thus see that a 3-core was hiding inside of the given Young
diagram.
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Cores

Recall proposed generating function

∑
n0,n1≥0

(#Hilbn0,n1 )t
n0
0 t

n1
1 =

∏
j≥1

1

(1−qj−1(t0t1)
j)(1−qj(t0t1)

j)
·
∑

m∈Z
tm

2

0 tm
2+m

1

Part of this generating function:∑
m∈Z

tm
2

0 tm
2+m

1

is the generating function for cores.

∴ Understanding how cores fit into the overall picture is imperative.
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Using Generating Function with Weil Conjectures

Using the Weil conjectures

An important result regarding the Weil conjectures is that if
#X(Fq) = f(q), with f(x) ∈ Z[x] then the Poincaré polynomial is
achieved by the substitution q 7→ z2.

For us this means if #Hilb
(n0,n1)
0 k2 is given by an integral

polynomial f(q), then f(z2) gives the Poincaré polynomial.

Example

#P over Fq is given by q+1, thus the Poincaré polynomial is given
by z2 + 1 which gives the Betti numbers b0 = 1, b1 = 0, b2 = 1.
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Using Generating Function with Weil Conjectures

Using the Weil conjectures

Fortunately for our work, we were able to show that the proposed

generating function for #Hilb
(n0,n1)
0 k2 met the requirements for

the substitution q 7→ z2 to give the Poincaré polynomial.

Unfortunately, our mentor brought it to our attention that the
punctual Hilbert scheme we are working with is not smooth, thus
the Weil conjectures do not apply and we will have to work with a
resolution.
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Recursion

Stratified Hilbert schemes

The stratified punctual Hilbert scheme of type (m0,m1), (d0, d1),

written Hilb
(m0,m1),(d0,d1)
0 k2, is a subset of Hilb

(m0,m1)
0 k2.

Example

〈y4, xy3, x2y, x4〉 ∈ Hilb
(4,5),(3,1)
0 k2

-
x

6y

p p p p p pp p p p p pp p p p p pp p p p p pp p p p p p
0

0
1

1

1

1

0
0

1
1

0

0
0

Hilb
(m0,m1)
0 k2 =

⋃
d0,d1≥0

Hilb
(m0,m1),(d0,d1)
0 k2

⇒ #Hilb
(m0,m1)
0 k2 =

∑
d0,d1≥0

#Hilb
(m0,m1),(d0,d1)
0 k2
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Recursion

#Hilb
(m0,m1),(d0,d1)
0 k2 =

∑
0≤d′0≤d1
0≤d′1≤d0

d′1−d′0=d0−d1+(−1)(d
′
0+d′1)((d′0+d′1+d0+d1)%2)

qr·#Hilb
(m0−d1,m1−d0),(d′0,d′1)
0 k2

where

r =

{
d′0 if d0 + d1 ≡ 0 mod 2

d′1 if d0 + d1 ≡ 1 mod 2

Let a, b, c, d ∈ Z≥0. The base cases are

#Hilb
(0,b>0),(c,d)
0 k2 = 0 #Hilb

(a,b),(c>b,d)
0 k2 = 0

#Hilb
(a,b),(c,d>a)
0 k2 = 0 #Hilb

(a6=0,b),(0,0)
0 k2 = 0

#Hilb
(0,0),(0,0)
0 k2 = 1
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Recursion

Why (m0 − d1,m1 − d0)?

Recurse by “chopping off” first column and sliding diagram
over, then counting which ideals give same diagram

Same as removing last block in each row

0 outside diagram ⇒ 1 in last box

1 outside diagram ⇒ 0 in last box

Also requires d′0 ≤ d1 and d′1 ≤ d0 in smaller scheme

1 0
0 1 0 1
1 0 1 0
0 1 0 1 0 1 0 1 −→

0 1 0
1 0 1
0 1 0 1 0 1 0



42/46
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Recursion

Some Special Cases

#Hilb
(k,k+1),(k+1,k−1)
0 k2 = 1

#Hilb
(k,k+1),(k+1,k−1)
0 k2 = 1

#Hilb
(k,k),(1,0)
0 k2 = qk

#Hilb
(k+1,k),(0,1)
0 k2 = qk

#Hilb
(k,k+1),(2,0)
0 k2 =

⌈
k
2

⌉
qk−1

#Hilb
(k+1,k),(0,2)
0 k2 =

⌊
k
2

⌋
qk
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Future Questions

Current future tasks and questions include

Work with the resolution for the Poincaré polynomial

Work on other group actions

Consider more refined topological invariants
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