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Introduction

An n × n matrix is totally positive if every minor
is positive. Naïve testing is inefficient as there are(2n

n

)
−1 minors. However, there are minimal tests of

size n2. We generalize the work of [1] to k-positive
matrices, which only require that every minor of or-
der at most k be positive. We find a family of cluster
algebras embedded in the total positivity cluster al-
gebra which give k-positivity tests, and give a com-
binatorial interpretation of some of these tests.

Figure 1: Double wiring diagram

Double Wiring Diagrams

A double wiring diagram is a family of n red and
n blue numbered wires such that each pair of same-
colored wires intersects exactly once. The cham-
bers are spaces between the wires, labeled by wires
which pass underneath. This turns diagrams into
total positivity tests. Three types of local moves
can “mutate” a diagram into a new one. Changed
chamber satisfies subtraction-free exchange relation
in surrounding chambers.

Figure 2: Local moves; exchange relation Y Z = AC + BD

Wemake each chamber a vertex and overlay a quiver
onto the diagram, so that arrows in and out of a
vertex determine exchange relation.

Figure 3: Quiver for double wiring diagram, ∗ = frozen.

Cluster Algebras

With quiver, can mutate at any vertex except frozen
ones, even if no local move possible, and again
have subtraction-free exchange relation. This makes
TP tests a cluster algebra. Call test expressions
variables (might not be matrix minors anymore).
Subtraction-freeness means by proving a certain ini-
tial test works, any cluster of variables in the cluster
algebra gives a test since we can write the initial
test as a subtraction-free rational expression in the
minors of this test.

Generalization

Does this argument hold for general k?
Problem: initial test has minors of every order. In
general case, the large ones (e.g. the determinant)
aren’t guaranteed to be positive.
Solution: restrict the quivers. For an all-minors
quiver, freeze any variable adjacent to a minor of
order greater than k, then delete all minors which
are too big. Call restricted cases k-seeds.

Figure 4: Restricted quiver for Figure 3 when k = 2.

Problem: now have fewer than n2 minors; not
enough to prove validity of an inital test.
Solution: add more variables. Test variables are
a collection of expressions such that adding them to
some initial k-seed gives k-positivity test of size n2 (a
test seed). Restricted initial test with missing solid
minors (coming from contiguous rows and columns)
of order k added gives k-positivity test [2].

Bridging

Restriction breaks total positivity cluster algebra
into components—not all clusters can be connected
by series of exchanges, since some might require too-
large minors. Some components can be extended to
give tests, others not. Bridges are restricted TP mu-
tations which swap test variable for cluster variable.

Example

Let n = 3, k = 2. Define

M =


a b c
d e f
g h j


and let a capital letter denote the minor obtained
by removing the row and column of the lowercase
version, e.g. A := ej − fh. There are also two
non-minor cluster variables, K := aA− det M and
L := jJ − det M . The restriction splits TP clus-
ter algebra into 8 sub-cluster algebras; 2 can be ex-
tended to 2-positivity test cluster algebras. Below is
graph showing clusters connected by mutations and
bridges.
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Figure 5: Bridges between two test components in n = 3, k = 2
case. The left has test variable A, the right has J . All have
frozen variables c, g, C, G.

Young Diagrams

Describe double wiring diagrams by their crossings.
ri is downward-right diagonal of n− i red crossings,
ending with bottom wire. bi is same but starts at
bottom and is upward-right. Figure 1 is r2r1b1b2.
Given Young diagrams contained in (n−1)×(n−1)
square, can construct double wiring diagram:
1 Start with b1b2 · · · bn−1.
2 Let `i be the number of boxes in ith row of Y .
3 For i ∈ [n− 1] insert ri between b`i

and b`i+1,
preserving decreasing order of rj’s.

Y =

gives r3b1r2b2b3r1, the double wiring diagram from
Figures 3,4.

Fundamental Paths

Each Young diagram contained in an (n − k) ×
(n − k) square gives a k-positivity test in a dif-
ferent component by applying construction and
adding missing solid k-minors as test variables.

Proof Sketch

Empty Young diagram gives initial test as base case.
Adding one box swaps an ri and bj; a series of third
type of local move applied increasingly high cham-
bers. Lower swaps are sub-cluster algebra muta-
tions; a swap on order k chamber is a bridge since
original and exchanged minors both solid; higher
swaps ignored by restriction. Once a box is out-
side of the (n − k) × (n − k) square, all swaps are
low order and stay within same component.

k-essential Minors

Question: Which sub-cluster algebras give tests?
A minor of order ≤ k is k-essential if ∃ a matrix
where it is the only non-positive minor of order ≤ k.
These must be in every all-minors test.
Conjecture: Solid k-minors are k-essential.
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