Cofibration Category

Yun Liu

March 17, 2019

1 Cofibration Category

Definition 1.1. A cofibration category is a category \mathcal{C} with two classes of morphisms

$$(\mathcal{C}, cof, we)$$

called cofibrations and weak equivalences subject to the following axioms.

- (C1) Composition axiom: the isomorphisms in \mathcal{C} are weak equivalences and also cofibrations.
- (C2) Pushout axiom: The pushout of a (trivial) cofibration always exists and is a (trivial) cofibration. For a cofibration $i: A \hookrightarrow B$ and $f: A \to Y$, there exists the pushout in \mathcal{C}

$$A \xrightarrow{f} Y$$

$$i \bigvee_{i} \overline{f} B \xrightarrow{\bar{f}} B \bigcup_{A} Y$$

and \overline{i} is a cofibration. Moreover,

- 1. if f is a weak equivalence, so is \overline{f} .
- 2. if i is a weak equivalence, so is \overline{i} .

(C3) Factorization axiom: Every map $f: A \to Y$ in \mathcal{C} can be factor as

where i is a cofibration and g is a weak equivalence.

(C4) Axiom on fibrant models: For each object X in C there is a trivial cofibration $X \xrightarrow{\sim} RX$ where RX is fibrant in \mathcal{C} . We call $X \xrightarrow{\sim} RX$ a fibrant model of X.

Definition 1.2. An object R in a cofibration category is a **fibrant model** (or fibrant) if each trivial cofibration $i: R \xrightarrow{\sim} Q$ in C admits a retraction $r \circ i: Q \to R, ir = \text{Id}_R$.

Let Ob_f be a class of fibrant models in \mathcal{C} which is sufficiently large, i.e. each object in \mathcal{C} has a fibrant model in Ob_f . The cofibrations and weak equivalences in Ob_f are inherited from the ones in \mathcal{C} and it's easy to see that axiom (C1), (C2) and (C4) are satisfied, if furthermore (C3) is satisfied, then Ob_f is a cofibration category.

(C2) can be verified in this way: For any object A, Y in C_f and $f : A \to Y$, we have a factorization $f = g \circ i$ in C, and we consider a pushout with $IB \in Ob(C_f)$,

then \overline{j} is a trivial cofibration and \overline{g} is a weak equivalence by pushout axiom, and since Y is a fibrant model, there is retraction $r: IX \bigcup_X Y \xrightarrow{\sim} Y$, then we get a desired factorization

Definition 1.3. If \mathcal{C} has an initial object \emptyset , an object X in \mathcal{C} is \emptyset -cofibrant if $\emptyset \hookrightarrow X$ is a cofibration.

Claim 1.1. Let C_c be the full subcategory of C consisting of cofibrant objects with cofibrations and weak equivalences inherited from the ones in C. Then C_c is a cofibration category.

Proof. Axiom (C1) is easy to see. For axiom (C2), it suffices to show $B \bigcup_A Y$ is cofibrant. Consider a pushout

Since Y is cofibrant, $B\bigcup_A Y$ is also cofibrant, hence $B\bigcup_A Y$ is in \mathcal{C}_c . For axiom (C3), it suffices to see that for every map $f: A \to Y$ in \mathcal{C}_c , f can be factor in \mathcal{C} as

and since i is a cofibration, X is cofibrant, so this is a factorization in \mathcal{C}_c .

For axiom (C4), note ant fibrant model of a \emptyset -cofibrant object is \emptyset -cofibrant.

Remark 1.1. The notion of \emptyset -cofibrant is not dual to the notion of fibrant in (C4), and it depends on the existence of the initial object \emptyset .

1.1 Mapping Cylinder and Homotopy

Let $i: A \hookrightarrow B$ be a cofibration, consider the pushout

which induces a map $\varphi: B \bigcup_A B \to B$ called **fold map**. We have a factorization of φ

$$B\bigcup_{A} B \xrightarrow{j} Z = I_B A \xrightarrow{p} B$$

Then $Z = I_B A$ is called a **relative cylinder** on $i : A \hookrightarrow B$. Note the maps $i_{\varepsilon} : B \to Z, \varepsilon = 0, 1$ are trivial fibration.

If X is a fibrant object, any two maps $\alpha, \beta : B \to X$ are homotopic relative (or under) B if there is a commutative diagram

where $Z = I_B A$ is a relative cylinder on $i : A \hookrightarrow B$. *H* is called a **homotopy** from α to β . This is an equivalence relation.

For a \emptyset -cofibrant object A there exists the sum $A + Y = A \bigcup_{\emptyset} Y$

where $Y \to A + Y$ is a cofibration. Also $A \to A + Y$ is cofibration provided Y is \emptyset -cofibrant.

The mapping cylinder Z_f of $f : A \to Y$ is defined by a factorization of the map $(1_A, f) : A + Y \to Y$

$$A + Y \xrightarrow{\sim} Z_f \xrightarrow{\sim} Y$$

If Y is cofibrant this yields a factorization $f = qi_1$

$$A \xrightarrow{i_1} Z_f \xrightarrow{\sim} Y$$

where q is a retraction of $i_0: Y \hookrightarrow A + Y \hookrightarrow Z_f$ and $i_1: A \hookrightarrow A + Y \hookrightarrow Z_f$.

Moreover, we can use the cylinder $Z = I_{\emptyset}A$ to construct a mapping cylinder via pushout, not

in the following diagram, the upper and lower squares are both pushouts.

Note since p is a weak equivalence, $A \hookrightarrow Z$ is a trivial fibration, thus $Y \hookrightarrow Z_f$ is a trivial fibration, so q is a weak equivalence.

Lemma 1.1. Let C be a cofibration category, then axiom (C2)(1), (C1) and (C3) imply (C2)(2). If all objects in C are cofibrant then axiom (C2)(2), (C1) and (C3) imply (C2)(1).

Proof. We consider the pushout diagram

where $f = g \circ i$ is the factorization given by axiom (C3). If j is a weak equivalence, then j' is a weak equivalence by (C2)(1), and similarly \bar{g} is a weak equivalence, so \bar{j} is a weak equivalence.

If every object in C is cofibrant, and f is weak equivalence then i is a weak equivalence, so by axiom (C2)(2), \overline{i} is a weak equivalence. Now we need to show \overline{g} is a weak equivalence. Since X is cofibrant, g admits a retraction r, so consider the following pushout diagram

we see that $\bar{g} \circ \bar{i} = 1_{\bar{Y}}$.

1.2 Homotopy Pushout

A commutative diagram

in a cofibration category is a **homotopy pushout** if for some factorization $A \hookrightarrow W \xrightarrow{\sim} B$ the induced map $W \bigcup_A X \to Y$ is a weak equivalence,

This implies for any factorization $A \hookrightarrow W \xrightarrow{\sim} B$ the induced map $W \bigcup_A X \to Y$ is a weak equivalence.

Exercise 1.1. Given a commutative diagram

if the upper square is a (homotopy) pushout, then the outer square is a (homotopy) pushout if and only if the lower square is a (homotopy) pushout.

Proof. The second one follows from the following lemma.

Lemma 1.2. Consider a commutative diagram

$$\begin{array}{c|c} X_0 & \stackrel{f}{\longleftarrow} X \xrightarrow{g} X_1 \\ \alpha & & & & & & \\ \gamma & & & & & \\ Y_0 & \stackrel{f'}{\longleftarrow} Y \xrightarrow{g'} Y_1 \end{array}$$

where in each row one of the maps is a fibration, then the pushouts of the rows exist and we have a map

$$\alpha \cup \beta : X_0 \bigcup_X X_1 \to Y_0 \bigcup_Y Y_1$$

- 1. Assume that α, β, γ and the induced map $(g, \beta) : Y \bigcup_X X_1 \to Y_1$ are cofibrations, then so is $\alpha \cup \beta$.
- 2. Assume that α, β, γ are weak equivalences, then so is $\alpha \cup \beta$.

1.3 Functors Between Cofibration Categories

Let \mathcal{C}, \mathcal{K} be cofibration categories and let $\alpha : \mathcal{C} \to \mathcal{K}$ be a functor.

- 1. The functor α is **based** if C and \mathcal{K} have an initial object (denoted by *) with α (*) = *.
- 2. The functor α preserves weak equivalences if α carries a weak equivalence in C to a weak equivalence in \mathcal{K} .
- 3. Let

be a pushout diagram. We say that α is compatible with the pushout $B \bigcup_A X$ if the induced diagram

is a homotopy pushout in \mathcal{K} .

We call α a model functor if α preserves weak equivalences and if α is compatible with all pushouts. (Hence a model functor carries a homotopy pushout in C to homotopy pushout in K.

Remark 1.2. A based model functor α is compatible with most of the constructions in a cofibration category. In general, we do not assume that a model functor carries a cofibration in C to a cofibration in \mathcal{K} .

Proposition 1.1. Let $\alpha, \beta : C \to K$ be functors between cofibration categories which are natural weak equivalent (finite chain of weak equivalences). If α preserves weak equivalences, then so does β . If α is compatible with homotopy pushout, then so is β . Hence if α is a model functor then so is β .

Corollary 1.1. If C is a cofibration category and $\alpha : C \to C$ is naturally weak equivalent to the identical functor, then α is a model functor.

Example 1.1. Let **Top** the cofibration category of topological spaces, then the singular realization functor yields a functor

$$|S|:\mathbf{Top} o \mathbf{Top}$$

which carries a space X to the CW complex |SX|, which is naturally weak equivalent to the identical functor.

2 Homotopy Theory of a Cofibration Category

2.1 Sets of Homotopy Classes

For a cofibration $Y \subseteq X$ and a map $uY \to U$ let

 $\operatorname{Hom}(X,U)^u$

be the set of all maps $f: X \to U$ in \mathcal{C} which $f|_Y = u$. We say f is an **extension** of u. On this set we have the homotopy relation relative Y which we denote by ' \simeq rel Y'.

Proposition 2.1. Let U be fibrant, Then all cylinders on $Y \subset X$ define the same homotopy relation relative Y on

$$Hom(X,U)^u$$
.

Moreover, the homotopy relation relative Y is an equivalence relation.

Thus if U is fibrant, we have the set

$$[X, U]^{Y} = [X, U]^{u} = \operatorname{Hom} (X, U)^{u} / \simeq \operatorname{rel} Y$$

of homotopy classes.

In particular, for an initial object \emptyset in \mathcal{C} , let

$$[X, U] = [X, U]^{\emptyset} = \operatorname{Hom}(X, U) / \simeq \operatorname{rel} Y$$

be the set of homotopy classes of maps from X to U.

2.2 The Homotopy Category of fibrant and cofibrant objects

Let \mathcal{C} be a cofibration category with initial object \emptyset , then we have the full subcategories

$$\mathcal{C}_{cf} \subset \mathcal{C}_c \subset \mathcal{C}$$

where C_{cf} consists of objects which are both fibrant and cofibrant, and C_c is the category of cofibrant objects. Note that C_c is a cofibration category, but C_{cf} in general is not.

Lemma 2.1. Homotopy relative \emptyset is a natural equivalence relation on the morphism set of C_{cf} .

We thus have the homotopy category

$$\mathcal{C}_{cf}/\simeq = \mathcal{C}_{cf}/(\simeq \operatorname{rel}\emptyset)$$
.

Let Ho (\mathcal{C}) be the localization of \mathcal{C} with respect to the given class of weak equivalences in \mathcal{C} .

Proposition 2.2. We have equivalences of homotopy categories

$$Ho\left(\mathcal{C}_{cf}\right) \xrightarrow{i}{\sim} Ho\left(\mathcal{C}_{c}\right) \xrightarrow{j}{\sim} Ho\left(\mathcal{C}\right)$$

3 Examples of Cofibration Categories

3.1 Topological Spaces

Theorem 3.1. The category **Top** of topological spaces with the class of cofibrations which are maps that has homotopy extension property with respect to any space in **Top** and the class of weak equivalences being the maps which are homotopy equivalences is a cofibration category in which all objects are fibrant and cofibrant.

Theorem 3.2. (Dual) The category **Top** of topological spaces with the class of fibrations which are maps that has homotopy lifting property with respect to any space in **Top** and the class of weak equivalences being the maps which are homotopy equivalences is a fibration category in which all objects are fibrant and cofibrant.

Theorem 3.3. The category **Top** of topological spaces with the class of cofibrations which are inclusions $B \subset A$ for which A is given by a well-ordered succession of attaching cells to B, and weak equivalences are weak homotopy equivalences is a cofibration category in which all objects are fibrant models. CW complexes are cofibrant objects and all cofibrant objects are CW spaces(homotopy equivalent to a CW complex).

Example 3.1. The category \mathcal{C} has objects (X, N_X) where X is a well-pointed path-connected CW space and N_X is a perfect and normal subgroup of $\pi_1(X)$, and morphisms are maps $f:(X, N_X) \to (Y, N_Y)$ which are basepoint preserving maps $f: X \to Y$ in **Top**_{*} with $f_*(N_X) \subset N_Y$.

The cofibrations are maps in \mathcal{C} which are cofibrations in **Top**.

Weak equivalences are maps in \mathcal{C} which induces isomorphisms

$$f_*: \pi_1(X) / N_X \cong \pi_1(Y) / N_Y$$

and

$$f_*: \hat{H}_*(X, f_*^*q^*\mathcal{L}) \cong \hat{H}_*(Y, q^*\mathcal{L})$$

here \hat{H}_* denote homology with local coefficients. The modules $q^*\mathcal{L}$ and $f_*^*q^*\mathcal{L}$ are lifted by q: $\pi_1(Y) \to \pi_1(Y) / N_Y$ and by $f_*: \pi_1(X) \to \pi_1(Y)$ respectively. **Theorem 3.4.** The structure above is a cofibration category where a fibrant model of (X, N_X) is given by Quillen's (+)-construction.

3.2 The Category of Chain Complexes

Weak equivalences: $f: V \to V'$ which induces isomorphisms on homology.

Cofibrations: injective chain maps with free (projective) cokernel.

Theorem 3.5. The category of bounded chain complexes with the above structure is a cofibration category.

3.3 The Category of Chain Algebras

Weak equivalences: $f: V \to V'$ which induces isomorphisms on homology.

Cofibrations: $f: A \to B$ such that there is a submodule V of B such that V is free and $A \coprod T(V) \to B$ is an isomorphism of algebras.

Theorem 3.6. Let k be a principal ideal domain. The category \mathbf{DA}_k of chain algebra over k with the above structure is a cofibration category.

3.4 The Category of Chain Lie Algebras

Weak equivalences: $f: A \to B$ which induces isomorphisms on homology.

Cofibrations: $f: A \to B$ such that there is a submodule V of B such that V is free and $A \coprod T(V) \to B$ is an isomorphism of Lie algebras.

Theorem 3.7. Let k be a principal ideal domain. The category LA of chain Lie algebras with the above structure is a cofibration category.

References

[1] H.	J.	Baues,	Algebraic		homotopy.	Cambridge		University
Press,	Cambridge,		New	York,	1989,	ISBN	0-521-	33376-8.
$\rm https://$	web.m	ath.rochester	.edu/peop	le/faculty,	/doug/otherpa	pers/baues	s4.pdf	