
Co�bration Category

Yun Liu

March 17, 2019

1 Co�bration Category

De�nition 1.1. A co�bration category is a category C with two classes of morphisms

(C, cof, we)

called co�brations and weak equivalences subject to the following axioms.

(C1) Composition axiom: the isomorphisms in C are weak equivalences and also co�brations.

(C2) Pushout axiom: The pushout of a (trivial) co�bration always exists and is a (trivial) co�bra-

tion. For a co�bration i : A ↪→ B and f : A→ Y , there exists the pushout in C

A
f //� _

i

��

Y � _

ī
��

B
f̄ // B

⋃
A

Y

and ī is a co�bration. Moreover,

1. if f is a weak equivalence, so is f̄ .

2. if i is a weak equivalence, so is ī.
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1 COFIBRATION CATEGORY

(C3) Factorization axiom: Every map f : A→ Y in C can be factor as

A
f //� o

i   

Y

X

g
∼

>>

where i is a co�bration and g is a weak equivalence.

(C4) Axiom on �brant models: For each object X in C there is a trivial co�bration X �
� ∼ // RX

where RX is �brant in C. We call X �
� ∼ // RX a �brant model of X.

De�nition 1.2. An object R in a co�bration category is a �brant model (or �brant) if each

trivial co�bration i : R �
� ∼ // Q in C admits a retraction r ◦ i : Q→ R, ir = IdR.

Let Obf be a class of �brant models in C which is su�ciently large, i.e. each object in C has a �brant

model in Obf . The co�brations and weak equivalences in Obf are inherited from the ones in C and

it's easy to see that axiom (C1), (C2) and (C4) are satis�ed, if furthermore (C3) is satis�ed, then

Obf is a co�bration category.

(C2) can be veri�ed in this way: For any object A, Y in Cf and f : A → Y , we have a

factorization f = g ◦ i in C, and we consider a pushout with IB ∈ Ob (Cf ),

A
f //� _

i
��

Y � _

j̄ o

��

X

g
∼

66

� _

j o
��

IX
ḡ

∼ // IX
⋃
X

Y

ro

__

then j̄ is a trivial co�bration and ḡ is a weak equivalence by pushout axiom, and since Y is a �brant

model, there is retraction r : IX
⋃
X

Y
∼−→ Y , then we get a desired factorization

A
f //� p

j◦i !!

Y

IX

r◦ḡ
∼

==
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1.1 Mapping Cylinder and Homotopy 1 COFIBRATION CATEGORY

De�nition 1.3. If C has an initial object ∅, an object X in C is ∅-co�brant if ∅ ↪→ X is a

co�bration.

Claim 1.1. Let Cc be the full subcategory of C consisting of co�brant objects with co�brations and

weak equivalences inherited from the ones in C. Then Cc is a co�bration category.

Proof. Axiom (C1) is easy to see. For axiom (C2), it su�ces to show B
⋃
A

Y is co�brant. Consider

a pushout

A
f //� _

i

��

Y � _

ī
��

B
f̄ // B

⋃
A

Y

Since Y is co�brant, B
⋃
A

Y is also co�brant, hence B
⋃
A

Y is in Cc.

For axiom (C3), it su�ces to see that for every map f : A→ Y in Cc, f can be factor in C as

A
f //� o

i   

Y

X

g
∼

>>

and since i is a co�bration, X is co�brant, so this is a factorization in Cc.

For axiom (C4), note ant �brant model of of a ∅-co�brant object is ∅-co�brant.

Remark 1.1. The notion of ∅-co�brant is not dual to the notion of �brant in (C4), and it depends

on the existence of the initial object ∅.

1.1 Mapping Cylinder and Homotopy

Let i : A ↪→ B be a co�bration, consider the pushout

A �
� i //� _

i

��

B� _

��
1

��

B �
� //

1 ..

B
⋃
A

B

ϕ

  
B
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1.1 Mapping Cylinder and Homotopy 1 COFIBRATION CATEGORY

which induces a map ϕ : B
⋃
A

B → B called fold map. We have a factorization of ϕ

B
⋃
A

B �
� j // Z = IBA ∼

p // B

Then Z = IBA is called a relative cylinder on i : A ↪→ B. Note the maps iε : B → Z, ε = 0, 1 are

trivial �bration.

If X is a �brant object, any two maps α, β : B → X are homotopic relative (or under) B if

there is a commutative diagram

B
⋃
A

B
� p

j
  

(α,β) // X

Z

H

BB

where Z = IBA is a relative cylinder on i : A ↪→ B. H is called a homotopy from α to β. This is

an equivalence relation.

For a ∅-co�brant object A there exists the sum A+ Y = A
⋃
∅

Y

∅ //
� _

��

Y � _

��
A // A+ Y

where Y → A+ Y is a co�bration. Also A→ A+ Y is co�bration provided Y is ∅-co�brant.

The mapping cylinder Zf of f : A → Y is de�ned by a factorization of the map (1A, f) :

A+ Y → Y

A+ Y �
� // Zf q

∼ // Y

If Y is co�brant this yields a factorization f = qi1

A �
� i1 // Zf q

∼ // Y

where q is a retraction of i0 : Y ↪→ A+ Y ↪→ Zf and i1 : A ↪→ A+ Y ↪→ Zf .

Moreover, we can use the cylinder Z = I∅A to construct a mapping cylinder via pushout, not
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1.1 Mapping Cylinder and Homotopy 1 COFIBRATION CATEGORY

in the following diagram, the upper and lower squares are both pushouts.

A� _

��

f // Y � _

��
1Y

��

A+A
f+1 //

� _

(i0,i1)

��

Y +A� _

(̄i0 ,̄i1)
��

(1Y ,f)

��

Z
π //

p o
��

Zf
q

''
A

f // Y

Note since p is a weak equivalence, A ↪→ Z is a trivial �bration, thus Y ↪→ Zf is a trivial �bration,

so q is a weak equivalence.

Lemma 1.1. Let C be a co�bration category, then axiom (C2)(1), (C1) and (C3) imply (C2)(2).

If all objects in C are co�brant then axiom (C2)(2), (C1) and (C3) imply (C2)(1).

Proof. We consider the pushout diagram

A �
� i //� _

j

��

f

$$
Zf ∼

g //
� _

j′

��

Y � _

j̄

��
B �
�

ī
//

f̄

;;Z̄f ḡ
// Y

where f = g ◦ i is the factorization given by axiom (C3). If j is a weak equivalence, then j′ is a

weak equivalence by (C2)(1), and similarly ḡ is a weak equivalence, so j̄ is a weak equivalence.

If every object in C is co�brant, and f is weak equivalence then i is a weak equivalence, so by

axiom (C2)(2), ī is a weak equivalence. Now we need to show ḡ is a weak equivalence. Since X is

co�brant, g admits a retraction r, so consider the following pushout diagram

A
f //� _

j
��

Y
r //� _

j̄
��

1

##
X ∼

g //� _

j′

��

Y � _

j̄
��

B
f̄
// Ȳ

r̄
//

1
;;X

ḡ
// Ȳ
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1.2 Homotopy Pushout 1 COFIBRATION CATEGORY

we see that ḡ ◦ ī = 1Ȳ .

1.2 Homotopy Pushout

A commutative diagram

A
f //

g

��

X

��
B // Y

in a co�bration category is a homotopy pushout if for some factorization A ↪→ W
∼−→ B the

induced map W
⋃
A

X → Y is a weak equivalence,

A
f //� _

i

��

X� _

��

W

h o
��

//W
⋃
A

X

��
B // Y

This implies for any factorization A ↪→ W
∼−→ B the induced map W

⋃
A

X → Y is a weak equiva-

lence.

Exercise 1.1. Given a commutative diagram

A //

��

X

��
B //

��

Y

��
C // Z

if the upper square is a (homotopy) pushout, then the outer square is a (homotopy) pushout if and

only if the lower square is a (homotopy) pushout.

Proof. The second one follows from the following lemma.
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1.3 Functors Between Co�bration Categories 1 COFIBRATION CATEGORY

Lemma 1.2. Consider a commutative diagram

X0

α

��

X
foo g //

γ

��

X1

β
��

Y0 Y
f ′oo g′ // Y1

where in each row one of the maps is a �bration, then the pushouts of the rows exist and we have a

map

α ∪ β : X0

⋃
X

X1 → Y0

⋃
Y

Y1

1. Assume that α, β, γ and the induced map (g, β) : Y
⋃
X

X1 → Y1 are co�brations, then so is

α ∪ β.

2. Assume that α, β, γ are weak equivalences, then so is α ∪ β.

1.3 Functors Between Co�bration Categories

Let C,K be co�bration categories and let α : C → K be a functor.

1. The functor α is based if C and K have an initial object (denoted by ∗) with α (∗) = ∗.

2. The functor α preserves weak equivalences if α carries a weak equivalence in C to a weak

equivalence in K.

3. Let

A
f //

g

��

X

��

B // Y = B
⋃
A

X

be a pushout diagram. We say that α is compatible with the pushout B
⋃
A

X if the

induced diagram

αA
f //

g

��

αX

��

αB // αY = α

(
B
⋃
A

X

)
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1.3 Functors Between Co�bration Categories 1 COFIBRATION CATEGORY

is a homotopy pushout in K.

4. We call α a model functor if α preserves weak equivalences and if α is compatible with all

pushouts. (Hence a model functor carries a homotopy pushout in C to homotopy pushout in

K.

Remark 1.2. A based model functor α is compatible with most of the constructions in a co�bration

category. In general, we do not assume that a model functor carries a co�bration in C to a co�bration

in K.

Proposition 1.1. Let α, β : C → K be functors between co�bration categories which are natural

weak equivalent (�nite chain of weak equivalences). If α preserves weak equivalences, then so does

β. If α is compatible with homotopy pushout, then so is β. Hence if α is a model functor then so is

β.

Corollary 1.1. If C is a co�bration category and α : C → C is naturally weak equivalent to the

identical functor, then α is a model functor.

Example 1.1. Let Top the the co�bration category of topological spaces, then the singular real-

ization functor yields a functor

|S| : Top→ Top

which carries a spaceX to the CW complex |SX|, which is naturally weak equivalent to the identical

functor.
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2 Homotopy Theory of a Co�bration Category

2.1 Sets of Homotopy Classes

For a co�bration Y ⊆ X and a map uY → U let

Hom (X,U)u

be the set of all maps f : X → U in C which f |Y = u. We say f is an extension of u. On this set

we have the homotopy relation relative Y which we denote by ''rel Y ' .

Proposition 2.1. Let U be �brant, Then all cylinders on Y ⊂ X de�ne the same homotopy relation

relative Y on

Hom (X,U)u .

Moreover, the homotopy relation relative Y is an equivalence relation.

Thus if U is �brant, we have the set

[X,U ]Y = [X,U ]u = Hom (X,U)u / ' relY

of homotopy classes.

In particular, for an initial object ∅ in C, let

[X,U ] = [X,U ]∅ = Hom (X,U) / ' relY

be the set of homotopy classes of maps from X to U .

2.2 The Homotopy Category of �brant and co�brant objects

Let C be a co�bration category with initial object ∅, then we have the full subcategories

Ccf ⊂ Cc ⊂ C
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2.2 The Homotopy Category of �brant and co�brant objects2 HOMOTOPY THEORY OF A COFIBRATION CATEGORY

where Ccf consists of objects which are both �brant and co�brant, and Cc is the category of co�brant

objects. Note that Cc is a co�bration category, but Ccf in general is not.

Lemma 2.1. Homotopy relative ∅ is a natural equivalence relation on the morphism set of Ccf .

We thus have the homotopy category

Ccf/ '= Ccf/ (' rel∅) .

Let Ho (C) be the localization of C with respect to the given class of weak equivalences in C.

Proposition 2.2. We have equivalences of homotopy categories

Ho (Ccf ) ∼
i // Ho (Cc) ∼

j // Ho (C)
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3 Examples of Co�bration Categories

3.1 Topological Spaces

Theorem 3.1. The category Top of topological spaces with the class of co�brations which are

maps that has homotopy extension property with respect to any space in Top and the class of weak

equivalences being the maps which are homotopy equivalences is a co�bration category in which all

objects are �brant and co�brant.

Theorem 3.2. (Dual) The category Top of topological spaces with the class of �brations which are

maps that has homotopy lifting property with respect to any space in Top and the class of weak

equivalences being the maps which are homotopy equivalences is a �bration category in which all

objects are �brant and co�brant.

Theorem 3.3. The category Top of topological spaces with the class of co�brations which are

inclusions B ⊂ A for which A is given by a well-ordered succession of attaching cells to B, and

weak equivalences are weak homotopy equivalences is a co�bration category in which all objects are

�brant models. CW complexes are co�brant objects and all co�brant objects are CW spaces(homotopy

equivalent to a CW complex).

Example 3.1. The category C has objects (X,NX) where X is a well-pointed path-connected CW

space and NX is a perfect and normal subgroup of π1 (X), and morphisms are maps f : (X,NX)→

(Y,NY ) which are basepoint preserving maps f : X → Y in Top∗ with f∗ (NX) ⊂ NY .

The co�brations are maps in C which are co�brations in Top.

Weak equivalences are maps in C which induces isomorphisms

f∗ : π1 (X) /NX
∼= π1 (Y ) /NY

and

f∗ : Ĥ∗ (X, f∗∗ q
∗L) ∼= Ĥ∗ (Y, q∗L)

here Ĥ∗ denote homology with local coe�cients. The modules q∗L and f∗∗ q
∗L are lifted by q :

π1 (Y )→ π1 (Y ) /NY and by f∗ : π1 (X)→ π1 (Y ) respectively.
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Theorem 3.4. The structure above is a co�bration category where a �brant model of (X,NX) is

given by Quillen's (+)-construction.

3.2 The Category of Chain Complexes

Weak equivalences: f : V → V ′ which induces isomorphisms on homology.

Co�brations: injective chain maps with free (projective) cokernel.

Theorem 3.5. The category of bounded chain complexes with the above structure is a co�bration

category.

3.3 The Category of Chain Algebras

Weak equivalences: f : V → V ′ which induces isomorphisms on homology.

Co�brations: f : A → B such that there is a submodule V of B such that V is free and

A
∐
T (V )→ B is an isomorphism of algebras.

Theorem 3.6. Let k be a principal ideal domain. The category DAk of chain algebra over k with

the above structure is a co�bration category.

3.4 The Category of Chain Lie Algebras

Weak equivalences: f : A→ B which induces isomorphisms on homology.

Co�brations: f : A → B such that there is a submodule V of B such that V is free and

A
∐
T (V )→ B is an isomorphism of Lie algebras.

Theorem 3.7. Let k be a principal ideal domain. The category LA of chain Lie algebras with the

above structure is a co�bration category.
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