
1 Talk 1: cotorsion pairs and abelian model cate-
gories

The goal of this talk is to introduce the notion of cotorsion pairs in an
abelian category, and go over a result by Mark Hovey ([Hov02]) that relates
cotorsion pairs to suitably algebraic model structures one can define on the
abelian category.

We start by defining cotorsion pairs. These were introduced in the late
70’s by Salce, and became more widely known in the 90’s when Enochs and
coauthors used them to prove the flat cover conjecture: namely, that for any
ring R, all R-modules admit a flat cover. The definition is as follows.

Definition 1.1. A cotorsion pair in an abelian category A is a pair (P, I)
consisting of two classes of objects of A that are the orthogonal complement
of each other with respect to the Ext1 functor. More explicitly,

(i) P ∈ P if and only if Ext1(P, I) = 0 for every I ∈ I, and

(ii) I ∈ I if and only if Ext1(P, I) = 0 for every P ∈ P.

Note that cotorsion pairs provide a generalization of injective and pro-
jective objects in an abelian category; indeed, an object P is projective
precisely when the functor Hom(P,−) is exact, which is equivalent to re-
quiring that Ext1(P,A) = 0 for every A ∈ A. Thus, if Proj denotes the class
of projective objects in A, we see that (P,A) is a cotorsion pair. Similarly,
if Inj denotes the class of injective objects, then (A, Inj) is a cotorsion pair.

Borrowing motivation from the case of injectives and projectives, it is
of interest to know when a cotorsion pair provides resolutions for any given
object.

Definition 1.2. Let (P, I) be a cotorsion pair in an abelian category A.
We say the cotorsion pair is complete if any object A in A can be resolved
as

0→ A→ I → P → 0

for some I ∈ I, P ∈ P, and as

0→ I ′ → P ′ → A→ 0

for some I ′ ∈ I, P ′ ∈ P.
Furthermore, we will say the pair is functorially complete if any map

f : A→ B can be lifted to a map between some resolutions of A and of B

0 A IA PA 0

0 B IB PB 0

f

and similarly for the other type of resolutions.
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Most of the cotorsion pairs that arise in nature are (or can be chosen to
be) functorially complete.

As an example, we can see that the cotorsion pair (Proj,A) is complete
precisely if A has enough projectives.

Definition 1.3. A cotorsion pair (P, I) is hereditary if the class P is closed
under kernels of epimorphisms, or equivalently, if I is closed under cok-
ernels of monomorphisms. More explicitly, if whenever f : A → B is an
epimorphism for A,B ∈ P, we have ker f ∈ P, and similarly for I.

As an example, the cotorsion pair (P,A) is hereditary: given an epimor-
phism f : A→ B, we can consider the exact sequence

0→ ker f → A
f−→ B → 0.

Since B is projective, this sequence splits, which makes ker f a direct sum-
mand of A (which is projective), and therefore projective.

Remark 1.4. Those of you who know a bit about algebraic K-theory may
have seen this condition before: the Gillet-Waldhausen theorem, which
states that if C is an exact category, then

K(C) ' K(Chb(C))

requires C to be closed under kernels of epimorphisms.

We now jump to model categories, which, as we know, are a setting in
which to do homotopy theory. For the sake of completeness, we briefly recall
the definition.

Definition 1.5. A model category is a category C with finite limits and
colimits, together with three classes of maps in C called cofibrations, fibra-
tions, and weak equivalences, that are closed under composition, contain the
identity maps, and satisfy the following axioms:

1. (2-out-of-3) if 2 out of the 3 maps f, g and gf are weak equivalences,
so is the third,

2. (retracts) cofibrations, fibrations and weak equivalences are closed
under retracts,

3. (lifts) any diagram

A B

C D

i p

where either i is a cofibration and p a trivial fibration, or i a trivial
cofibration and p a fibration, there exists a lift C → B,
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4. (factorizations) any map f can be factored as f = pi, for some
cofibration i and trivial fibration p, and as f = qj for some trivial
cofibration j and fibration q.

So, how do model categories relate to cotorsion pairs? Let A be an
abelian category, and consider a cotorsion pair (P, I) in A. Given an exact
sequence

0→ A
i−→ B → P → 0

where P ∈ P, we have that, for any I ∈ I, the map A(B, I) → A(A, I) is
surjective (since Ext1(P, I) = 0). That means for any diagram as below

A I

B 0

i

there exists a lift B → I. This has a flavor of the lifting axiom in model
categories, and if we imagine i to be a trivial cofibration, we would be saying
something like “every object in I is fibrant”.

Let’s make this more precise.

Definition 1.6. An abelian model category is an abelian categoryA equipped
with a model structure in which

1. cofibrations are the monomorphisms with cofibrant cokernel,

2. fibrations are the epimorphisms with fibrant kernel.

It is easy to show that, in this case, trivial cofibrations are monomor-
phisms with an acyclic cofibrant cokernel, and trivial fibrations are epimor-
phisms with an acyclic fibrant kernel.

Note that this is not circular: we are not defining the model structure by
these rules, instead, we start with a model structure (and thus, a notion of
cofibrations, fibrations, and classes of cofibrant and fibrant objects already
determined), and require that these conditions be satisfied.

Also note that abelian model categories are “suitably algebraic” in the
sense that the cofibrations and fibrations preserve the structure of the un-
derlying abelian category, in this specific way.

Hovey showed in [Hov02] that any algebraic model category determines
two complete cotorsion pairs, in the following way:

Theorem 1.7. Let A be an abelian model category, and denote by C,F ,Z
the classes of cofibrant, fibrant, and acyclic objects, respectively. Then (C ∩
Z,F) and (C,F ∩ Z) are complete cotorsion pairs.
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Proof. We sketch the proof for the case of (C,F ∩Z). Let C be a cofibrant
object, and F an acyclic fibrant one; we first wish to show that Ext1(C,F ) =
0. Now, remember that the elements of Ext1(C,F ) can be viewed as the
isomorphism classes of extensions of C by F . Then, we need to show that all
such extensions are isomorphic to the trivial extension (given by the direct
sum), which is equivalent to proving that any extension

0→ F
i−→ A→ C → 0

splits.
Since i is a monomorphism with cofibrant cokernel, it’s a cofibration,

and so the diagram

F F

A 0

i

admits a lift, which provides a splitting for our sequence.
Now, suppose that Ext1(A,F ) = 0 for all acyclic fibrant F ; we must

show that A ∈ C. Let g : B → C be a trivial fibration, that is, g fits into an
exact sequence

0→ ker g → B
g−→ C → 0

where ker g ∈ F ∩ Z, and consider any diagram of the form

0 B

A C

g

Applying the functor A(A,−) to the above sequence, we see that A(A, g) :
A(A,B)→ A(A,C) is an epimorphism, and so the above square must have
a lift. This shows that 0→ A is a cofibration, and thus A ∈ C. Dually, one
shows that if Ext1(C,B) = 0 for every C ∈ C, then B ∈ F ∩ Z.

To prove that the cotorsion pair is complete, we consider an object A ∈ A
and try to find a resolution

0→ F → C → A→ 0

for some F ∈ F ∩ Z, C ∈ C. Note that this would be trivial if A was
cofibrant, since any class in a cotorsion pair contains the zero object. If not,

we find a cofibrant replacement: the map 0→ A factors as 0
i−→ A

p−→ A for
some cofibration i and trivial fibration p. Then A ∈ C, and ker p ∈ F ∩ Z,
so A can be resolved by

0→ ker p→ A
p−→ A→ 0

Dually, we find an injective resolution.
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This is a fun result, where we can see how the model structure comes
to our aid to prove, quite easily, the required conditions for the cotorsion
pair. More interesting, perhaps, is the fact that this result admits a converse:
every abelian model structure is determined by a compatible pair of complete
cotorsion pairs.

Theorem 1.8. Let C,F and Z be classes of objects in a bicomplete abelian
category A, such that (C,F∩Z) and (C∩Z,F) are complete cotorsion pairs.
Suppose that, in addition, Z is closed under retracts and, whenever 2 out
of 3 terms in a short exact sequence are in Z, then so is the third. Then
there exists a unique abelian model structure on A having C as the class of
cofibrant objects, F as the class of fibrant objects, and Z as the class of
acyclic objects.

This proof is much, much more involved than the previous one for the
opposite direction. Interestingly, properties that are usually hard to prove
when one wishes to determine a model structure, like the lifting and factor-
ization axioms, are not so hard to show, and the main difficulty arises from
defining the weak equivalences and proving the 2-out-of-3 axiom.

Remark 1.9. How are weak equivalences defined?
Suppose that f is a weak equivalence in our model structure. Then, we

can factor f as f = pi where p is a trivial fibration and i a cofibration. But
weak equivalences have 2-out-of-3, so i must actually be a trivial cofibration.

We use this to define weak equivalences: they are precisely the maps
that can be factores as a trivial cofibration (that is, a monomorphism with
cokernel in C ∩ Z) followed by a trivial fibration (that is, an epimorphism
with kernel in F ∩ Z).

Example 1.10. Let R be a quasi-Frobenius ring (that is, a ring such that
projective modules and injective modules coincide). Then, one can take
C = F = R−mod, and Z = Proj = Inj; then, (C,F ∩ Z) = (R −mod, Inj)
and (C ∩ Z,F) = (Proj, R−mod) are complete cotorsion pairs, and induce
a model category structure on R−mod whose homotopy category is known
in representation theory as the stable category of R−modules.

Example 1.11. Let R be any ring, and consider the abelian category Ch(R)
of unbounded chain complexes in R. If we take C = Ch(R),Z to be the
class of exact complexes, and F the class of DG-injective complexes (exact
+ DG-injective = categorical injective), then (C,F ∩Z) = (Ch(R), Inj) and
(C ∩ Z,F) = (exact, DG− injective) are complete cotorsion pairs, and they
determine the usual injective model structure, where cofibrations are degree-
wise monomorphisms, and weak equivalences are quasi-isomorphisms.

One can recover the projective model structure from a similar pair of
cotorsion pairs.
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