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1 Introduction

The goal of these two lectures is to prove a theorem, originally due to Bokstedt:
Theorem 1.1 (Bokstedt).
THH*(]FP) = IFp [X]/ |X| =2

This was originally proved by a tedious spectral sequences argument, but that’s
not the approach we’ll take. Instead, we’ll take advantage of two different theorems.
Theorem 1.2 (Hopkins—-Mahowald). There is an equivalence of IE,-ring spectra

HEF, ~ Mf,,
where fp: 0?S3 - BGL; (Sp) is the map determined by 1 —p € miBGL;(S5,) ~ Z;.
Theorem 1.3 (Blumberg-Cohen-Schlichtkrull). Let f: X — B GL;(R) be an [E;-map of
spaces. Assume that the [E;-structure on Mf extends to an E3-structure. Then there
is an equivalence of [E1-R-module spectra

THH(Mf/R) ~ Mf @ BX;

Proof of Theorem 1.1. We compute only THH(IF,). The computation of THH(Z) is
similar. By ??, it suffices to compute THH(Mf}). By Theorem 1.3,

THH(HF,) ~ THH(Mf,) ~ Mf, ® ZB(Q*S?) ~ Mf, ® £2°QS* ~ HIFF, ® 12QS%.

So as a spectrum, THH(HIF,) ~ HIFF, ® £°QS3. The homotopy of this spectrum
is (by definition!) the IF,-homology of QS3, which can be calculated by the Serre
spectral sequence associated to the fibration

Qs® — Map([0,1],5%) — S°.
B2, = Hy(S% He(QS%Fp)) = Hyrt(Map([0,1],$3);1F,) = 0.

I leave this as an exercise (see Hatcher’s spectral sequences book). O
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Last time we focused on the Hopkins—-Mahowald theorem, and constructed some
Thom spectra. This time, we’ll focus on the Blumberg—Cohen-Schlichtkrull theorem
and use it to do some computations. But first, some reminders on Thom spectra.

2 Thom Spectra

Let R be an [Eq-ring spectrum.

Definition 2.1. Given a local system of R-modules, f: X — B GL;(R), the associated
Thom spectrum is

Mf = colim(io f) = colim(X B GL;(R) LN R-Mod).
If f is an [E,,-map for some n, then Mf is an [E;;-R-module.

Here GL1(R) is defined by the homotopy pullback of spaces

GL;(R) —— Q*(R)
(T[oR)X — 1R

This is an [Ej-algebra in spaces, and if R is an E-ring spectrum, then GL;(R) is an
[E-algebra in spaces.

Example 2.2. If X = Q252Y for some space Y (i.e. X is the free [E;-algebra on Y),
then [E;-maps 0Q?72Y — BGL4(R) are in bijection with maps Y — B GL;(R), by the
universal property of free IE;-algebras.

In particular, if Y = S', to define a map Q2S®* — B GL;(R), it suffices to pick an
element in 711B GL{(R) = 71y GL1(R) = 7p(R) *.

This is how we will construct HIF,, as a Thom spectrum.

HIF, ~ M(Q2S3 % BGLy(S;)),
where the map f, is determined by 1 —p € mB GL(5;) = Zg.
Example 2.3.

HZ, ~ M(1220283 — 0283 2, BGLy(S;))

Example 2.4.

]
HZ ~ M (T>2Q253 ELALN [ BGL:i(S;) — BGL, (S))

P prime
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Lemma 2.5. Let R be an [E,-ring spectrum and let S be an [E,,-R-algebra. Let f: X —
B GL(R) be a map of E,, spaces. Then there is an equivalence of [E,, rings:

Mf®g S ~ M (X — BGL{(R) — BGL;(S)).

Proof. The map B GL1(R) — B GL(S) corresponds to restriction of the functor (—) ®g
S: R-Mod — S-Mod to the full subgroupoid of R-modules equivalent to R. The
lemma then follows from the definition of Mf as a colimit and the fact that tensoring
with S commutes with colimits. [

Example 2.6. Assume p > 2. Let { = (pn_g be a (p™ — 1)-th root of unity. Consider
the map f;: 0?S3 5B GL; (SQ[C]) defined by the element 1 —p € mB GL; (SQ[CD =
(Z,[])*. Then

Mf(: ~ H]Fp [C] ~ H]Fpn.

Example 2.7.
HIF,[x] ~ M(Q283 25 BGL;(S3) — B GL; (S3lx])).
Example 2.8. Consider the homotopy pushout diagram of E-rings:

Sibd == 5p
xn—>y2l l
|
Splyl —— R
After tensoring this diagram with HZ,,, we obtain the homotopy pushout diagram

HZ,[x] —=% HZ,

el

HZ,lyl —— HZ, ®R

But because the map HZ,[x] — HZ,[y],x — yz is a flat map, we can compute the
homotopy pushout as usual in D(Z,), where it is isomorphic to HZ,[x]/ x2. Hence,
we have

R® HZ, ~ HZ,[x]/x*.

Therefore, since HZ,, is already known to be a Thom spectrum, we can then see that
HZ,[x]/ x2 is a Thom spectrum, via the composite
f
15,07%8% = 0?S% 2 BGL4(S;) — BGL4(R),
where R is the pushout in the diagram above.

Proposition 2.9. For a fixed ring spectrum R, the Thom spectrum construction defines
a functor M:: 8 ;gcr,(r) — R-Mod that is both colimit-preserving and symmetric
monoidal with respect to the Cartesian monoidal structure on its domain.
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3 THH of these Thom spectra

Definition 3.1. Let (€, ®, I, ¢) be a symmetric monoidal category with symmetry c,
and let (A, i, 1) be a monoid in €. The cyclic bar construction is the simplicial object
BYY(A) in € given by [n] — A®(*1) with face and degeneracy maps:
dl _ idA@i ® H. ® idA® (n—1i+1) (1 < Tl)
CA® OH®1dA®n 1) (1:“')
§{ = 1dA®(i+1) ®T1 ® 1dA®(nfi)

If C is instead a symmetric monoidal co-category, we can define a similar object
as a functor from the nerve N(A°P) to C.

Example 3.2. If € = k-Mod, then BY¢(A) corresponds to the complex defining
Hochschild homology, and its realization is a space HH(A) whose homotopy is
Hochschild homology of A.

Definition 3.3. Let A be a ring spectrum. The topological Hochschild homology of
A is the realization of the cyclic bar construction of A in the category of spectra, i.e.

THH(A) := |BY(A)| = clgii@([n] — A%,
Definition 3.4. Let A be an R-module spectrum. The relative THH of A is the

realization of the cyclic bar construction of A in the category of R-module spectra. It
is denoted THH(A /R).

We have already seen how we can use Theorem 1.3 to compute THH in various
cases:

THH(HF,) ~ HF, ® QS
THH(HZ,) ~ HZ, ® 153Q8°
THH(HZ) ~ HZ ® 153083

but what about the new Thom spectra? The flaw with Theorem 1.3 is that it computes
relative THH, not absolute THH (relative to S). We want to compute THH(IF, [x]),
for example, but Theorem 1.3 can only tell us THH(F,[x]/Sp[x]).

We can try to address some of these difficulties w1th the base change property of
THH: if A and B are R-algebra spectra, then

THH(B/R) ®THH(A/R) A ~ THH(B/A).

Let’s try to use this to compute THH(IF,[x]) from THH(FF,[x]/S[x]): R=S5, A = S[x],
and B = IF, [x]. Then:

THH(Fp [x]) ®1rmsy) SKI ~ THH(F,[x] /S[x]).
The problem now is that we’re working backwards, and we need to know THH(S[x]).
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