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The goal of our talk today is to give a description of the categories of fibrant objects and show

that higher groupoids and higher categories are examples of categories of fibrant objects.

1 Categories of Fibrant Objects

Definition 1.1. A category with weak equivalences is a category V together with a subcategory

W which
e contains all isomorphisms of V;

e satisfies two-out-of-three: for any two composable morphisms f, g of V, if two of f,g,go f are

in W, then so is the third.

Definition 1.2. A category of fibrant objects is a small category V with weak equivalences W
and a subcategory F C V of fibrations, satisfying the following axioms. Here, we refer to morphisms

which are both fibrations and weak equivalences as trivial fibrations.

(F1) there is a terminal object e in V, and (X —e) € F,VX € Ob(V), i.e. any morphism with

target e in V is a fibration.
(F2) pullbacks of fibrations are fibrations;

(F3) pullbacks of trivial fibrations are trivial fibrations;
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(F4) every morphism f: X — Y has a factorization

N

X f

Y

where r is a weak equivalence and p is a fibration.

An object X is called fibrant if the morphism X — e is a fibration. Axiom (F1) states that
every object in V is fibrant.

Associated to a small category with WE is its simplicial realization L (V,W). This is a category
enrich in simplicial sets, with the same object as V), which refines the usual localization.

The reason for the importance of categories of fibrant objects is that they allow a simple real-
ization of the simplicial localization L (V, W). Namely, by a theorem of Cisinski [Proposition 3.23],
the simplicial Hom-set Hom (X,Y’) of morphisms from X to Y in the simplicial localization of a

category of fibrant objects is the nerve of the category whose objects are the spans

Lemma 1.1. The weak equivalences of a category of fibrant objects are determined by the trivial
fibrations: a morphism f is a weak equivalence if and only if it factorizes as a composition qs where

q 1s a trivial fibration and s is a section of trivial fibrations.

Proof. Let Y be an object of V. The diagonal Y — Y XY has a factorization into a weak equivalence
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followed by a fibration

Yy —5 py 2y oy

The object PY is called a path space of Y.
Since Y is fibrant, the two projection p; : Y X Y — Y are fibrations since they are pullbacks of
the fibration ¥ ——¢
Y xY 2

. 1/

Y

and it follows that the morphisms 0; : PY DUy wy sy are fibrations. Note they are weak

equivalences since the compositions

Yy S py X0y oy Py

are identities, thus weak equivalences, and by 2-of-3, 9; : PY ——==Y are trivial fibrations.

Given a morphism f: X — Y and the pullback

x—t oy
()| s

d| P(f)—~=PY |
(f) |2 U f
x—1 oy

we see that the projection p (f) : P (f)~—= X isa trivial fibration, with sections s (f) : X — P (f)
induced by s : Y — PY and f: X — Y. Note s (f) is a weak equivalence by 2-of-3.

We can also express P (f) as a pullback of the upper square

(f) ———=PY
p(f)Xq(f)i iaoxal
fx1
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which shows that p (f) x ¢ (f) is a fibration. Furthermore, p; : X x Y ——=Y is a fibration since X
is fibrant and p; is the pullback of a fibration, so ¢ (f) : P(f) —= X x Y P oV isthe composite
of fibrations and thus a fibration.

In this way, we obtain the desired factorization of f:

P(f)
v N
X Y
!
O

Remark 1.1. The proof of this lemma show that axiom (F4) is implied by the following special case:

(F4’) each diagonal morphism A : X — X x X factorizes as

PX
AN
X X X xX

where s is a weak equivalence and ¢ is a fibration.
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2 Descent category

Definition 2.1. (Descent category) A small category V of spaces, together with a subcategory of

covers, satisfying
(D1) V has finite limits;
(D2) the pullback of a cover is a cover;
(D3) if f is a cover and gf is a cover, then g is a cover.
is called a descent category.
Example 2.1.
1. Topos with epimorphisms as covers;

2. category of schemes with surjective étale morphisms/smooth epimorphisms/faithful flat mor-

phisms as covers;
3. category of Banach analytic spaces with surjective submersions as covers.

Definition 2.2. The kernel pair of a morphism f: X — Y in a category with finite limits is the
diagram

X xy X X

The coequalizer p of the kernel pair of f, if exists, is called the coimage of f:

N

Xxy X ~X-2oz 'sy

The image of f is the morphism ¢: Z — Y.

Definition 2.3. A morphism f: X — Y in a category V is an effective epimorphism if p equals

f, in the sense that ¢ is an isomorphism. In other words, f is the coequalizer of some kernel pair.

One of the reason for the importance of effective epimorphisms is that pullback along an effective

epimorphism is conservative, i.e. reflecting isomorphisms.
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Definition 2.4. A descent category is subcanonical is covers are effective epimorphisms.
All the categories which we have defined above have this property.

Definition 2.5. A category is regular if
e it has finite limits;
e kernel pairs have coequalizers;

e the pullback of an effective epimorphism along any morphism is again an effective epimor-

phism.

A regular category admits a good notion of image factorization, i.e., every morphism factors
into an effective epimorphism followed by a monomorphism, and such a factorization is unique up
to isomorphism.

Regular epimorphisms are not generally closed under composition. But in a regular category,

this is true.

Proposition 2.1. In a regular category C, regular epimorphisms and strong epimorphisms (= ex-
tremal epimorphisms since C admits pullbacks) coincide; hence regular epimorphisms are closed

under composition.

Definition 2.6. A regular descent category is a subcanonical descent category together with a

subcategory of regular morphisms satisfying the following axioms:

(R1) every cover is regular;

(R2) the pullback of a regular morphism is regular;

(R3) every regular morphism has a coimage, and its coimage is a cover.

Lemma 2.1. Let V be a reqular descent category, and consider the factorization of a regular mor-
phism f : X — Y into a cover p : X — Z followed by a morphism i : Z — Y, then i is a

monomorphism.
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Proof. Consider
X Xy X—7 Xy X—X

i b

XXyZHZXyZHZ

i |,

Z7— P Lz 1y

where all the four squares are pullbacks. Then p Xy p: X xy X — Z Xy Z is the composition of

covers, and thus a cover, so it is an effective epimorphism. Note

mo(pxyp)=mo(pxyp),

S0 m = o : 4 Xy Z — Z, which implies that ¢ is a monomorphism.
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3 k-groupoids

3.1 Definitions

Definition 3.1. A simplicial object in a descent category is called a simplicial space.

A finite simplicial set is a simplicial set having only a finite number of nondegenerate simplicies.
Given a simplicial space X and a finite simplicial set T, let Hom (7', X') be the space of simplicial
morphisms from 7" to X. This is a finite limit in V and its existence is guaranteed by (D1). In

particular, By Yoneda embedding, X,, = Hom (A", X).

Definition 3.2. Let T be a finite simplicial set and i: S~——=T be a simplicial subset. If f :

X — Y is a morphism of simplicial spaces, define

Hom (27 f) = Hom (57 X) ><HOIn(S,Y) Hom (Ta Y)

give by the pullback

Hom (S, X) —L"> Hom (S, Y)

Definition 3.3. Let n > 0 be a natural number. The matching space Hom (0A", X) of a
simplicial space X is the finite limit Hom (OA™, X') which represents the simplicial morphisms from
OA™ to X. More generally, the matching space of a simplicial morphism f : X — Y is the finite
limit

Hom (OA™ — A", f) = Hom (A", X)) Xtom(aar.y) Yn-

Definition 3.4. A simplicial morphism f : X — Y in sV is a hypercover if for all n > 0 the
morphism

X,, — Hom (9A™ < A", f)

1S a cover.
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Lemma 3.1. Let T be o finite simplicial set and 1 : S——=T be a simplicial subset. If f : X — Y

s a hypercover, then the induced morphism
Hom (T, X) ——= Hom (i, f)

1S a cover.

Proof. There is a filtration of T'
S=F TCFTcC.---CT

satisfying the following conditions:
L T=U, /T,
2. there is a weakly monotone sequence n;, [ > 0 and maps z; : A™ — F;T and y; : 0A™ — F;_T

such that the following diagram is a pushout

oAmM o T

L L

Am " L [T

Then the morphism
Hom (F;T, X) —— Hom (F;_1T — T, f)

is a cover since it is the pullback of the cover X,,, — Hom (OA™ — A™, f). O

3.2 Intuition

Example 3.1. Let A7 C A" be the horn which consists of the union of all but the ¢-th face of the

n-simplex, a simplicial set X is the nerve of a groupoid precisely when the induced morphism

X, — Hom (A}, X)

is an isomorphism for n > 1.
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Example 3.2. Let A be a simplicial abelian group, the associated complex of normalized chains

vanishes after degree £ if and only if the morphism A,, — Hom (A}, A) is an isomorphism for n > k.

Motivated by these examples, Duskin defines a k-groupoid to be a simplicial set X such that
the morphisms X,, —— Hom (A}, X) is surjective for n > 0 and bijective for n > k.

Here, we generalize Duskin’s theory of k-groupoids to descent categories.

Definition 3.5. Let k € N. A simplicial space X in a descent category V is a k-groupoid if for
each 0 <4 < n, the morphism

X, —Hom (A7, X)
is a cover for n > 0 and an isomorphism for n > k.

Denote by siV the category of k-groupoids with morphisms the simplicial morphisms of the
underlying simplicial spaces. Thus the category sgV of 0-groupoids is equivalent to V), and the
category s1V of 1-groupoids is equivalent to the category of Lie groupoids in V, i.e., groupoids such
that the source and target maps are covers. (The equivalence is induced by mapping a Lie groupoid

to its nerve.)

Definition 3.6. A morphism f: X — Y of k-groupoids is a fibration if the morphism

X,, — Hom (A} — A", f)

isa cover for 0 <i<mnandn>0.

3.3 The category of k-groupoids

Theorem 3.1. The category of k-groupoids siV is a category of fibrant objects with fibrations and

hypercovers as fibrations and trivial fibrations.
The key of the proof is similar to the idea in the proof of Lemma 3.1.

Definition 3.7. Let m > 0. An m-expansion i : S < T is a map of simplicial such that there
exists a filtration

S=FTCcKITc---CcT
satisfying the following conditions:

10
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1. T =\, AT;

2. there is a weakly monotone sequence n;,! > 0 and maps z; : A™ — F;T and y; : AZZ — F 1T

such that the following diagram is a pushout

Al T

AT FT

Lemma 3.2. If S C A" is the union of 0 < m < n faces of A", then the inclusion i : S — A" is

an m-erpansion.

Lemma 3.3. Let T be a finite simplicial set and i : S — T be an m-expansion.

1. If X s a k-groupoid, the induced morphism

Hom (T, X) —— Hom (S, X)

s a cover, and an isomorphism if m > k.

2. If f: X =Y is a fibration of k-groupoids, the induced morphism
Hom (T, X) ——= Hom (i, f)

s a cover, and an isomorphism if m > k.
Corollary 3.1. If X is a k-groupoid, the face map 0; : X,, = X,,_1 s a cover.

Lemma 3.4. If f: X — Y 1is a fibration of k-groupoids, then
a: X, — Hom (A} — A", f)

is an isomorphism for n > k.

11
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Proof. We have the following commuting diagram in which the square is a pullback

X, — Hom (A} — A", f) Y,
S =~ ~|y
TR |
Hom (A}, X) Hom (A',Y)
Since 8 and « are isomorphisms, so is a. O

Lemma 3.5. A hypercover f: X —Y of k-groupoids is a fibration.
Proof. For n > 0 and 0 < ¢ < n, we have the following commutative diagram in which the square

is a pullback:

X, — Hom (OA™ < A", f) Xn_1

e | |

Hom (A} < A", f) —— Hom (9A™ ! — A"~1 f)

note o and ~y are covers, so 3 is a cover. O
Lemma 3.6. Fibrations and hypercovers are closed under composition.

Lemma 3.7. Ifp: X — Y is a hypercover and f : Z — Y is a morphism, then the pullback q of p
along f is a hypercover.
XxyZ——X

L)

VA Y

Lemma 3.8. If p : X — Y 1is a fibration of k-groupoids and f : Z — Y 4is a morphism of k-

groupoids, then X Xy Z is a k-groupoid and the morphism q in the pullback diagram

XxyZ——X

L)

A Y

is a fibration.

Next, we show that sV is a descent category with hypercovers as covers.

12
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Lemma 3.9. If f : X — Y and g : Y — Z are morphisms of simplicial spaces and f,gf are

hypercovers, then g is a hypercover.

In order to show that k-groupoids form a category of fibrant objects, we need to construct path

spaces.

Definition 3.8. Let P, : sV — sV be the functor on simplicial spaces such that

(P,X),, = Hom (A™", X),

where A™™ = A™ x A",

The functor P, is the space of maps from A™ to X. In particular, Pp.X = X and PX = P, X is

a path space of X.

Definition 3.9. A morphism f: X — Y of k-groupoids is a weak equivalence if the fibration

q(f): P(f) =Y

is a hypercover, where P (f) = X xy PY.

Remark 3.1. In case of Kan complexes, this characterization of weak equivalences amounts to the

vanishing of the relative simplicial homotopy groups.

Lemma 3.10. The simplicial morphism PLX — X x X is a fibration and the face maps PLX — X

are hypercovers. So the factorization aziom holds in s;V.
Lemma 3.11. The weak equivalences form a subcategory of spV .

Lemma 3.12. If f : X =Y and g: Y — Z are morphisms of k-groupoids such that f and gf are

weak equivalences, then g is a weak equivalence.
Lemma 3.13. A fibration f: X — Y is a weak equivalence if and only if it is a hypercover.

Proof. In the following commutative diagram the solid arrows are hypercovers

P X—P(f)
|
l 1q(f)
/ y
x-J .y

13
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and lemma follows from lemma 3.9. O

Lemma 3.14. If f : X — Y s a fibration and g : Y — Z are gf are hypercovers, then f is a

hypercover.

Lemma 3.15. If f : X = Y and g: Y — Z are morphisms of k-groupoids such that g, gf are weak

equivalences, then f is a weak equivalence.

The following theorem is analogous to Gabriel and Zisman’s famous theorem on anodyne exten-

sions.

Theorem 3.2. A morphism f: X — Y is a weak equivalence if and only if the morphisms

Hom (A™ — A" ) —— Hom (0A"+! < A1 f)

are covers for n > 0.

14
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4 k-categories

Recall the thick 1-simplex A is the nerve of the groupoid [[1]] with objects {0,1} and a single

morphism between any pair of objects.

Let £ > 0.
Definition 4.1. A k-category in a descent category V is a simplicial space X such that

1. if 0 < i < n, the morphisms

X, —Hom (A}, X)
is a cover and an isomorphism if n > k.

2. if ¢ = 0,1, the morphism
Hom (A', X) — Hom (A}, X) = X,

is a cover.

Lemma 4.1. A k-category X is (k + 1)-coskeletal, that is, for any n >0,
X, = coskp41Xn = Hom (skp 1 A", X)) .

Proposition 4.1. A k-groupoid is a k-category.

Definition 4.2. A quasi-fibration f : X — Y of k-categories is a morphism of the underlying

simplicial spaces such that

1. if 0 < i < n, the morphisms
X, — Hom (A} — A", f)

is a cover;
2. if ¢ = 0,1, the morphism
Hom (AI,X) —— Hom (AO — Al f) = Xg Xyo Hom (Al,Y)

15
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is a cover.

Theorem 4.1. We have a functor X — (X) from k-categories to k-groupoids which may be inter-

preted as the k-groupoid of quasi-invertible morphisms in X.

1. If X is a k-category, then the simplicial space

(X),, = Hom (A", X)

s a k-groupoid.

2. If f: X =Y is a quasi-fibration of k-categories, then

(f): (X) = (¥)

1s a fibration of k-groupoids.

3. If f: X =Y is a hypercover of k-categories, then

(f)+ (X) = (Y)

15 a hypercover of k-groupoids.

Theorem 4.2. The category of k-categories is a category of fibrant objects.

16
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5 Example: Nerve of DGA

Let A be a differential graded algebra over a field K with d : A®* — A®*!, which is finite-dimensional
in each degree and concentrated in degrees > —k.

The curvature map is the quadratic polynomial
O (p) =du+p?: AL — A?

The Maurer-Cartan locus

MC (A) =V (®) Cc A!
is the zero locus of ®.
Given p,v € MC (A), define a differential d,,,, on the graded vector space underlying A by

a€ A d,,a=da+ pa— (=1)'av € AL,

Let C* (A™) be the differential graded algebra of normalized simplicial cochains on A™ with
coefficients in K.

An element a € C* (A™) ® A® corresponds to a collection of elements
(aio...ik S Az_k|0 Tigp <o < < n)

where a;,...;, is the evaluation of the cochain a on the face of the simplex A™ with vertices {ig, - - ,ix}.
The differential on the differential graded algebra C* (A™)® A is the sum of the simplicial differential
on C* (A™) ® A and the internal differential of A:

k
k
Z0 ik Z 10"31'"% + (_1) d(aio"'ik)
=0

The product of C* (A™) ® A combines the Alexander-Whitney product on simplicial cochains

with the product on A: if a has total degree j, then

k
an Z (J Dk=1) ai()"'izbiz"'ik'

Z() ’Lk
=0

17
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The nerve of a differential graded algebra A is the simplicial scheme N¢A such that N, A is the
MaurerCartan locus of C* (A") ® A:

N,A =MC (C* (A™) ® A)

Theorem 5.1. Let A be a differential graded algebra such that A’ is finite-dimensional for i < 1,

and vanishes for i < —k. Then NoA is a (regular) k-category.

18
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