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The goal of our talk today is to give a description of the categories of �brant objects and show

that higher groupoids and higher categories are examples of categories of �brant objects.

1 Categories of Fibrant Objects

De�nition 1.1. A category with weak equivalences is a category V together with a subcategory

W which

• contains all isomorphisms of V;

• satis�es two-out-of-three: for any two composable morphisms f, g of V, if two of f, g, g ◦ f are

in W, then so is the third.

De�nition 1.2. A category of �brant objects is a small category V with weak equivalences W

and a subcategory F ⊂ V of �brations, satisfying the following axioms. Here, we refer to morphisms

which are both �brations and weak equivalences as trivial �brations.

(F1) there is a terminal object e in V, and (X → e) ∈ F , ∀X ∈ Ob (V), i.e. any morphism with

target e in V is a �bration.

(F2) pullbacks of �brations are �brations;

(F3) pullbacks of trivial �brations are trivial �brations;
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1 CATEGORIES OF FIBRANT OBJECTS

(F4) every morphism f : X → Y has a factorization

P
p

�� ��
X

∼
r

>>

f
// Y

where r is a weak equivalence and p is a �bration.

An object X is called �brant if the morphism X → e is a �bration. Axiom (F1) states that

every object in V is �brant.

Associated to a small category with WE is its simplicial realization L (V,W). This is a category

enrich in simplicial sets, with the same object as V, which re�nes the usual localization.

The reason for the importance of categories of �brant objects is that they allow a simple real-

ization of the simplicial localization L (V,W). Namely, by a theorem of Cisinski [Proposition 3.23],

the simplicial Hom-set Hom (X,Y ) of morphisms from X to Y in the simplicial localization of a

category of �brant objects is the nerve of the category whose objects are the spans

P
g

��

f

~~
X Y

where f is a trivial �bration and whose morphisms are commuting diagrams

P0

f0

~~

g0

  
h

��

X Y

P1

f1

``

g1

>>

Lemma 1.1. The weak equivalences of a category of �brant objects are determined by the trivial

�brations: a morphism f is a weak equivalence if and only if it factorizes as a composition qs where

q is a trivial �bration and s is a section of trivial �brations.

Proof. Let Y be an object of V. The diagonal Y → Y ×Y has a factorization into a weak equivalence
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1 CATEGORIES OF FIBRANT OBJECTS

followed by a �bration

Y ∼
s // PY

∂0×∂1// // Y × Y

The object PY is called a path space of Y .

Since Y is �brant, the two projection pi : Y × Y → Y are �brations since they are pullbacks of

the �bration Y // // e

Y × Y p0 // //

p1
����

Y

����
Y // // e

and it follows that the morphisms ∂i : PY
∂0×∂1// // Y × Y pi // // Y are �brations. Note they are weak

equivalences since the compositions

Y ∼
s // PY

∂0×∂1// // Y × Y pi // // Y

are identities, thus weak equivalences, and by 2-of-3, ∂i : PY
∼ // // Y are trivial �brations.

Given a morphism f : X → Y and the pullback

X

s(f) o
��

f //

Id

��

Y

o s
��

Id

��

P (f)
π //

p(f) o
����

PY

o f
����

X
f // Y

we see that the projection p (f) : P (f)
∼ // // X is a trivial �bration, with sections s (f) : X → P (f)

induced by s : Y → PY and f : X → Y . Note s (f) is a weak equivalence by 2-of-3.

We can also express P (f) as a pullback of the upper square

P (f)
π //

p(f)×q(f)
����

PY

∂0×∂1
����

X × Y f×1 //

p0
����

Y × Y
p0
����

X
f // Y
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1 CATEGORIES OF FIBRANT OBJECTS

which shows that p (f)×q (f) is a �bration. Furthermore, p1 : X × Y // // Y is a �bration since X

is �brant and p1 is the pullback of a �bration, so q (f) : P (f) // // X × Y p1 // // Y is the composite

of �brations and thus a �bration.

In this way, we obtain the desired factorization of f :

P (f)
q(f)

""
X

s(f)
<<

f
// Y

Remark 1.1. The proof of this lemma show that axiom (F4) is implied by the following special case:

(F4') each diagonal morphism ∆ : X → X ×X factorizes as

PX
q

$$ $$
X

∼
s

==

∆
// X ×X

where s is a weak equivalence and q is a �bration.
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2 DESCENT CATEGORY

2 Descent category

De�nition 2.1. (Descent category) A small category V of spaces, together with a subcategory of

covers, satisfying

(D1) V has �nite limits;

(D2) the pullback of a cover is a cover;

(D3) if f is a cover and gf is a cover, then g is a cover.

is called a descent category.

Example 2.1.

1. Topos with epimorphisms as covers;

2. category of schemes with surjective étale morphisms/smooth epimorphisms/faithful �at mor-

phisms as covers;

3. category of Banach analytic spaces with surjective submersions as covers.

De�nition 2.2. The kernel pair of a morphism f : X → Y in a category with �nite limits is the

diagram

X ×Y X
//
// X

The coequalizer p of the kernel pair of f , if exists, is called the coimage of f :

X ×Y X
//
// X

p //

f

��
Z

i // Y

The image of f is the morphism i : Z → Y .

De�nition 2.3. A morphism f : X → Y in a category V is an e�ective epimorphism if p equals

f , in the sense that i is an isomorphism. In other words, f is the coequalizer of some kernel pair.

One of the reason for the importance of e�ective epimorphisms is that pullback along an e�ective

epimorphism is conservative, i.e. re�ecting isomorphisms.

5



2 DESCENT CATEGORY

De�nition 2.4. A descent category is subcanonical is covers are e�ective epimorphisms.

All the categories which we have de�ned above have this property.

De�nition 2.5. A category is regular if

• it has �nite limits;

• kernel pairs have coequalizers;

• the pullback of an e�ective epimorphism along any morphism is again an e�ective epimor-

phism.

A regular category admits a good notion of image factorization, i.e., every morphism factors

into an e�ective epimorphism followed by a monomorphism, and such a factorization is unique up

to isomorphism.

Regular epimorphisms are not generally closed under composition. But in a regular category,

this is true.

Proposition 2.1. In a regular category C, regular epimorphisms and strong epimorphisms (= ex-

tremal epimorphisms since C admits pullbacks) coincide; hence regular epimorphisms are closed

under composition.

De�nition 2.6. A regular descent category is a subcanonical descent category together with a

subcategory of regular morphisms satisfying the following axioms:

(R1) every cover is regular;

(R2) the pullback of a regular morphism is regular;

(R3) every regular morphism has a coimage, and its coimage is a cover.

Lemma 2.1. Let V be a regular descent category, and consider the factorization of a regular mor-

phism f : X → Y into a cover p : X → Z followed by a morphism i : Z → Y , then i is a

monomorphism.
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2 DESCENT CATEGORY

Proof. Consider

X ×Y X //

��

Z ×Y X //

��

X

p

��
X ×Y Z //

��

Z ×Y Z //

��

Z

i
��

Z
p // Z

i // Y

where all the four squares are pullbacks. Then p ×Y p : X ×Y X → Z ×Y Z is the composition of

covers, and thus a cover, so it is an e�ective epimorphism. Note

π1 ◦ (p×Y p) = π2 ◦ (p×Y p) ,

so π1 = π2 : Z ×Y Z → Z, which implies that i is a monomorphism.
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3 K-GROUPOIDS

3 k-groupoids

3.1 De�nitions

De�nition 3.1. A simplicial object in a descent category is called a simplicial space.

A �nite simplicial set is a simplicial set having only a �nite number of nondegenerate simplicies.

Given a simplicial space X and a �nite simplicial set T , let Hom (T,X) be the space of simplicial

morphisms from T to X. This is a �nite limit in V and its existence is guaranteed by (D1). In

particular, By Yoneda embedding, Xn = Hom (∆n, X).

De�nition 3.2. Let T be a �nite simplicial set and i : S �
� // T be a simplicial subset. If f :

X → Y is a morphism of simplicial spaces, de�ne

Hom (i, f) = Hom (S,X)×Hom(S,Y ) Hom (T, Y )

give by the pullback

Hom (i, f) //

��

Hom (T, Y )

i∗

��
Hom (S,X)

f∗ // Hom (S, Y )

De�nition 3.3. Let n ≥ 0 be a natural number. The matching space Hom (∂∆n, X) of a

simplicial space X is the �nite limit Hom (∂∆n, X) which represents the simplicial morphisms from

∂∆n to X. More generally, the matching space of a simplicial morphism f : X → Y is the �nite

limit

Hom (∂∆n ↪→ ∆n, f) = Hom (∂∆n, X)×Hom(∂∆n.Y ) Yn.

De�nition 3.4. A simplicial morphism f : X → Y in sV is a hypercover if for all n ≥ 0 the

morphism

Xn
// Hom (∂∆n ↪→ ∆n, f)

is a cover.
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3.2 Intuition 3 K-GROUPOIDS

Lemma 3.1. Let T be a �nite simplicial set and i : S �
� // T be a simplicial subset. If f : X → Y

is a hypercover, then the induced morphism

Hom (T,X) // Hom (i, f)

is a cover.

Proof. There is a �ltration of T

S = F−1T ⊂ F0T ⊂ · · · ⊂ T

satisfying the following conditions:

1. T =
⋃
l FlT ;

2. there is a weakly monotone sequence nl, l ≥ 0 and maps xl : ∆nl → FlT and yl : ∂∆nl → Fl−1T

such that the following diagram is a pushout

∂∆nl
yl //

��

Fl−1T

��
∆nl

xl // FlT

Then the morphism

Hom (FlT,X) // Hom (Fl−1T ↪→ FlT, f)

is a cover since it is the pullback of the cover Xnl
→ Hom (∂∆nl ↪→ ∆nl , f).

3.2 Intuition

Example 3.1. Let Λni ⊆ ∆n be the horn which consists of the union of all but the i-th face of the

n-simplex, a simplicial set X is the nerve of a groupoid precisely when the induced morphism

Xn
// Hom (Λni , X)

is an isomorphism for n > 1.
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3.3 The category of k-groupoids 3 K-GROUPOIDS

Example 3.2. Let A be a simplicial abelian group, the associated complex of normalized chains

vanishes after degree k if and only if the morphism An → Hom (Λni , A) is an isomorphism for n > k.

Motivated by these examples, Duskin de�nes a k-groupoid to be a simplicial set X such that

the morphisms Xn
// Hom (Λni , X) is surjective for n > 0 and bijective for n > k.

Here, we generalize Duskin's theory of k-groupoids to descent categories.

De�nition 3.5. Let k ∈ N. A simplicial space X in a descent category V is a k-groupoid if for

each 0 ≤ i ≤ n, the morphism

Xn
// Hom (Λni , X)

is a cover for n > 0 and an isomorphism for n > k.

Denote by skV the category of k-groupoids with morphisms the simplicial morphisms of the

underlying simplicial spaces. Thus the category s0V of 0-groupoids is equivalent to V, and the

category s1V of 1-groupoids is equivalent to the category of Lie groupoids in V, i.e., groupoids such

that the source and target maps are covers. (The equivalence is induced by mapping a Lie groupoid

to its nerve.)

De�nition 3.6. A morphism f : X → Y of k-groupoids is a �bration if the morphism

Xn
// Hom (Λni ↪→ ∆n, f)

is a cover for 0 ≤ i ≤ n and n > 0.

3.3 The category of k-groupoids

Theorem 3.1. The category of k-groupoids skV is a category of �brant objects with �brations and

hypercovers as �brations and trivial �brations.

The key of the proof is similar to the idea in the proof of Lemma 3.1.

De�nition 3.7. Let m > 0. An m-expansion i : S ↪→ T is a map of simplicial such that there

exists a �ltration

S = F−1T ⊂ F0T ⊂ · · · ⊂ T

satisfying the following conditions:
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3.3 The category of k-groupoids 3 K-GROUPOIDS

1. T =
⋃
l FlT ;

2. there is a weakly monotone sequence nl, l ≥ 0 and maps xl : ∆nl → FlT and yl : Λnl
il
→ Fl−1T

such that the following diagram is a pushout

Λnl
il

yl //

��

Fl−1T

��
∆nl

xl // FlT

Lemma 3.2. If S ⊂ ∆n is the union of 0 < m ≤ n faces of ∆n, then the inclusion i : S ↪→ ∆n is

an m-expansion.

Lemma 3.3. Let T be a �nite simplicial set and i : S ↪→ T be an m-expansion.

1. If X is a k-groupoid, the induced morphism

Hom (T,X) // Hom (S,X)

is a cover, and an isomorphism if m > k.

2. If f : X → Y is a �bration of k-groupoids, the induced morphism

Hom (T,X) // Hom (i, f)

is a cover, and an isomorphism if m > k.

Corollary 3.1. If X is a k-groupoid, the face map ∂i : Xn → Xn−1 is a cover.

Lemma 3.4. If f : X → Y is a �bration of k-groupoids, then

α : Xn
// Hom (Λni ↪→ ∆n, f)

is an isomorphism for n > k.
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3.3 The category of k-groupoids 3 K-GROUPOIDS

Proof. We have the following commuting diagram in which the square is a pullback

Xn
//

β

∼=

''

Hom (Λni ↪→ ∆n, f) //

∼=
��

Yn

∼= γ

��
Hom (Λni , X) // Hom (Λni , Y )

Since β and γ are isomorphisms, so is α.

Lemma 3.5. A hypercover f : X → Y of k-groupoids is a �bration.

Proof. For n > 0 and 0 ≤ i ≤ n, we have the following commutative diagram in which the square

is a pullback:

Xn
α//

β ''

Hom (∂∆n ↪→ ∆n, f) //

��

Xn−1

γ

��
Hom (Λni ↪→ ∆n, f) // Hom

(
∂∆n−1 ↪→ ∆n−1, f

)
note α and γ are covers, so β is a cover.

Lemma 3.6. Fibrations and hypercovers are closed under composition.

Lemma 3.7. If p : X → Y is a hypercover and f : Z → Y is a morphism, then the pullback q of p

along f is a hypercover.

X ×Y Z //

q

��

X

p

��
Z

f // Y

Lemma 3.8. If p : X → Y is a �bration of k-groupoids and f : Z → Y is a morphism of k-

groupoids, then X ×Y Z is a k-groupoid and the morphism q in the pullback diagram

X ×Y Z //

q

��

X

p

��
Z

f // Y

is a �bration.

Next, we show that sV is a descent category with hypercovers as covers.
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3.3 The category of k-groupoids 3 K-GROUPOIDS

Lemma 3.9. If f : X → Y and g : Y → Z are morphisms of simplicial spaces and f, gf are

hypercovers, then g is a hypercover.

In order to show that k-groupoids form a category of �brant objects, we need to construct path

spaces.

De�nition 3.8. Let Pn : sV → sV be the functor on simplicial spaces such that

(PnX)m = Hom (∆m,n, X) ,

where ∆m,n = ∆m ×∆n.

The functor Pn is the space of maps from ∆n to X. In particular, P0X = X and PX = P1X is

a path space of X.

De�nition 3.9. A morphism f : X → Y of k-groupoids is a weak equivalence if the �bration

q (f) : P (f)→ Y

is a hypercover, where P (f) = X ×Y P1Y .

Remark 3.1. In case of Kan complexes, this characterization of weak equivalences amounts to the

vanishing of the relative simplicial homotopy groups.

Lemma 3.10. The simplicial morphism P1X → X ×X is a �bration and the face maps P1X → X

are hypercovers. So the factorization axiom holds in skV.

Lemma 3.11. The weak equivalences form a subcategory of skV.

Lemma 3.12. If f : X → Y and g : Y → Z are morphisms of k-groupoids such that f and gf are

weak equivalences, then g is a weak equivalence.

Lemma 3.13. A �bration f : X → Y is a weak equivalence if and only if it is a hypercover.

Proof. In the following commutative diagram the solid arrows are hypercovers

P1X //

��

P (f)

q(f)
��

X
f // Y
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3.3 The category of k-groupoids 3 K-GROUPOIDS

and lemma follows from lemma 3.9.

Lemma 3.14. If f : X → Y is a �bration and g : Y → Z are gf are hypercovers, then f is a

hypercover.

Lemma 3.15. If f : X → Y and g : Y → Z are morphisms of k-groupoids such that g, gf are weak

equivalences, then f is a weak equivalence.

The following theorem is analogous to Gabriel and Zisman's famous theorem on anodyne exten-

sions.

Theorem 3.2. A morphism f : X → Y is a weak equivalence if and only if the morphisms

Hom
(
∆n ↪→ ∆n+1, f

)
// Hom

(
∂∆n+1 ↪→ Λn+1

n+1, f
)

are covers for n ≥ 0.
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4 k-categories

Recall the thick 1-simplex ∆1 is the nerve of the groupoid [[1]] with objects {0, 1} and a single

morphism between any pair of objects.

Let k > 0.

De�nition 4.1. A k-category in a descent category V is a simplicial space X such that

1. if 0 < i < n, the morphisms

Xn
// Hom (Λni , X)

is a cover and an isomorphism if n > k.

2. if i = 0, 1, the morphism

Hom
(
∆1, X

)
// Hom

(
Λ1
i , X

) ∼= X0

is a cover.

Lemma 4.1. A k-category X is (k + 1)-coskeletal, that is, for any n ≥ 0,

Xn
∼= coskk+1Xn = Hom (skk+1∆n, X) .

Proposition 4.1. A k-groupoid is a k-category.

De�nition 4.2. A quasi-�bration f : X → Y of k-categories is a morphism of the underlying

simplicial spaces such that

1. if 0 < i < n, the morphisms

Xn
// Hom (Λni ↪→ ∆n, f)

is a cover;

2. if i = 0, 1, the morphism

Hom
(
∆1, X

)
// Hom

(
∆0 ↪→∆1, f

)
= X0 ×Y 0 Hom

(
∆1, Y

)
15



4 K-CATEGORIES

is a cover.

Theorem 4.1. We have a functor X 7→ (X) from k-categories to k-groupoids which may be inter-

preted as the k-groupoid of quasi-invertible morphisms in X.

1. If X is a k-category, then the simplicial space

(X)n = Hom (∆n, X)

is a k-groupoid.

2. If f : X → Y is a quasi-�bration of k-categories, then

(f) : (X)→ (Y )

is a �bration of k-groupoids.

3. If f : X → Y is a hypercover of k-categories, then

(f) : (X)→ (Y )

is a hypercover of k-groupoids.

Theorem 4.2. The category of k-categories is a category of �brant objects.
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5 EXAMPLE: NERVE OF DGA

5 Example: Nerve of DGA

Let A be a di�erential graded algebra over a �eld K with d : A• → A•+1, which is �nite-dimensional

in each degree and concentrated in degrees > −k.

The curvature map is the quadratic polynomial

Φ (µ) = dµ+ µ2 : A1 → A2

The Maurer-Cartan locus

MC (A) = V (Φ) ⊂ A1

is the zero locus of Φ.

Given µ, ν ∈MC (A), de�ne a di�erential dµ,ν on the graded vector space underlying A by

a ∈ Ai 7→ dµ,νa = da+ µa− (−1)i aν ∈ Ai+1.

Let C• (∆n) be the di�erential graded algebra of normalized simplicial cochains on ∆n with

coe�cients in K.

An element a ∈ C• (∆n)⊗A• corresponds to a collection of elements

(
ai0···ik ∈ A

i−k|0 ≤ i0 < · · · < ik ≤ n
)

where ai0···ik is the evaluation of the cochain a on the face of the simplex ∆n with vertices {i0, · · · , ik}.

The di�erential on the di�erential graded algebra C• (∆n)⊗A is the sum of the simplicial di�erential

on C• (∆n)⊗A and the internal di�erential of A:

(δa)i0···ik =
k∑
l=0

(−1)l ai0···̂il···ik + (−1)k d (ai0···ik)

The product of C• (∆n) ⊗ A combines the Alexander-Whitney product on simplicial cochains

with the product on A: if a has total degree j, then

(a ∪ b)i0···ik =

k∑
l=0

(−1)(j−l)(k−l) ai0···ilbil···ik .
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5 EXAMPLE: NERVE OF DGA

The nerve of a di�erential graded algebra A is the simplicial scheme N•A such that NnA is the

MaurerCartan locus of C• (∆n)⊗A:

NnA = MC (C• (∆n)⊗A)

Theorem 5.1. Let A be a di�erential graded algebra such that Ai is �nite-dimensional for i ≤ 1,

and vanishes for i ≤ −k. Then N•A is a (regular) k-category.
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