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The nerve of a category is among the most fundamental constructions in category

theory for homotopy theorists, to the point that it is popular to identify a category with its

nerve, a simplicial set. This identification is the foundation for the geometric interpretation

of (∞, 1)-categories as quasicategories, simplicial sets that look like nerves of categories but

where composites of arrows are no longer unique. Unlike more traditional algebraic notions

of higher categories, quasicategories form the class of fibrant-cofibrant objects in a model

category structure, and can be easily shown to have lots of convenient properties. While

I prefer to think of the nerve not as an inclusion but as converting algebraic information

to geometric, the geometric perspective has been incredibly fruitful in studying higher

categories. In these notes I describe how analogous nerve operations can be constructed

for n-categories and how those constructions extend to models for (∞, n)-categories.

1. Higher Categories

Often in mathematics, we deal with categories whose morphisms are related to ea-

chother. Functions on ordered sets can be partially ordered, functors can be related by

natural transformations, and continuous functions are related by homotopies. We want

a categorical structure that can capture this kind of higher dimensional information. As

such, higher categories allow us to describe settings where there are “higher dimensional”

arrows between the morphisms, and arrows between those arrows, and so on. These higher

dimensional arrows are called n-cells in dimension n, and look like:

0− cells 1− cells 2− cells 3− cells · · ·

(
•
) (

• •
)

• • • • · · ·

Now we want n-categories to have identities and composition of n-cells, but they also

need to play nicely with composition of lower dimensional cells. So for 2-cells we have two

different kinds of composition:
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• • ; • •

• • • ; • •
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h
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β
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α;β
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g

k

β

f ;g

h;k

α·β

The first, called vertical composition, is the natural way one would think of composing

2-cells. The second, called horizontal composition, can be thought of as composition of 1-

cells acting on 2-cells. Both of these compositions have identities: for vertical composition,

there is an identity 2-cell at each 1-cell, and for horizontal composition, the identity 2-cell

at the identity 1-cell at each 0-cell is an identity. They are also both associative, but not

just individually for compositions of 3 2-cells in either direction, but for any diagram that

can be composed by a sequence of horizontal and/or vertical compositions: any order of

such compositions will yield the same result. A category with 2-cells and compositions and

identities satisfying these properties is called a 2-category.

• • • • ; (uniquely) • •

Example 1. The category of categories has 0-cells categories, 1-cells functors, and 2-cells

natural transformations, with the usual horizontal and vertical compositions of natural

transformations.

Similarly, an n-category has 1-cells up through n-cells (between parallel (n − 1)-cells

with shared boundaries), and the n-cells have n different compositions: one like vertical

composition which composes a path of adjacent n-cells, then one induced by the compo-

sition of k-cells for 1 ≤ k < n. The composition operation for each k has identities given

by the identity n-cell at each (k − 1)-cell, and they are collectively associative in that any

order of compositions of a diagram are equal. An ω-category has n-category structure for

all n.
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Example 2. The category of topological spaces has 1-cells continuous functions. It would

be nice to be able to have 2-cells as homotopies, 3-cells homotopies between those homo-

topies, and so on. The problem is that vertical composition of homotopies is only associative

up to higher homotopy, and this is true at all levels, so this is not a strict ω-category like

those discussed above, but a weak ω-category, which is traditionally called an ∞-category.

This kind of weak higher categorical structure is very common, arguably more so than

strict higher categories, and arises from the idea that when we have higher cells we can

have properties that hold only “up to homotopy”, where the higher cells play the role of

homotopies. For 2-categories, properties like associativity come in many different strengths:

strict weak weaker (lax)

• • • • • •

(f ;g);h

f ;(g;h)

(f ;g);h

f ;(g;h)

(f ;g);h

f ;(g;h)

We will focus on the middle option, since it gives us properties up to higher cells with

equalities weakened to equivalence, rather than simply arrows (which require careful choice

of direction and is often weaker than necessary). A weak n-category is an n-category with

all properties only required to hold weakly in this sense except for n-cells. A weak ω-

category is called an ∞-category (this conflicts with modern usage somewhat as I describe

below, but I think it is the most appropriate terminology).

Example 3. The category of topological spaces with continuous functions and (higher)

homotopies is an ∞-category. However, we can observe that the n-cells for n > 1, all

homotopies, are weakly invertible: the reverse of a homotopy composed with the original

is homotopic to an identity. So here we have a weak inverse property in dimensions > 1.

This is called an (∞, 1)-category, which is unfortunately often all that people mean when

they say ∞-category.

More generally, an (n, r)-category for r ≤ n is an n-category (let’s assume everything

from this point on is weak) with all k-morphisms for k > r having weak inverses (for the

vertical-like composition). An (n, n)-category is the same as an n-category, which includes

(in my terminology) the case n =∞. Note that this indexing is monotonic in the following

sense: for n < m any (n, r)-category can be seen as an (m, r)-category with only identity
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k-morphisms for n < k ≤ m, since these identities are certainly isomorphisms. Similarly,

for r < s an (n, r)-category can be seen as an (n, s)-category by forgetting the (weak)

invertibility of the k-morphisms for r < k ≤ s.

(n, r)-Categories (n, s)-Categories

(m, r)-Categories (m, s)-Categories

One familiar with the modern usage of the term ∞-category will know that my no-

tational departure from the new norm runs even deeper than I have admitted thus far.

Rarely does a working mathematician talk about ∞-categories in terms of a sequence of

composition operations satisfying weak associative and unital properties, even with the

assumption that all morphisms above dimension 1 have weak inverses. They use the term

to describe quasicategories (or occasionally other similar structures), which are just a kind

of simplicial set that I describe below. This represents a fundamental distinction from how

I (and perhaps others, I can only hope) think about categorical structures. My picture

of categories is entirely algebraic, in the sense I have described, and is the definitional

generalization of n-categories, which always refer to the algebraic gadgets I have defined.

However, a homotopy theorist or algebraic geometer may find cumbersome all of these

compositions and properties which carry their higher cell witnesses as extra data. They

care about being able to write or cite proofs of properties of these things, and so far those

proofs have been found for quasicategories, which can be seen as an ‘equivalent’ way of

thinking about (∞, 1)-categories. The meaning of this ‘equivalence’ is rather sketchy, but

I will give one possible explanation for it below, and making it less sketchy is a research

goal of mine.

2. The Nerve

Consider the functor i : ∆→ Cat : n̄ := {0, ..., n} 7→ (0→ 1→ ...→ n). This functor

is fully faithful, and we can consider it as an inclusion. Accordingly, I will write n̄ to denote

the corresponding category.

Definition 4. The nerve of a category C is the simplicial setNC withNCn = HomCat(n̄, C),
where for each map f : n̄→ m̄ in ∆, NCf : HomCat(m̄, C)

f∗−→ HomCat(n̄, C).

Example 5. It quickly follows that N n̄ = ∆n, the free n-simplex. The nerve of the
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category generated by · ← · → · → · ← · is a triangle with two edges attached to its first

and last vertices.

These examples begin to illustrate how the nerve takes algebraic composition informa-

tion and converts it to geometric information: composites look like triangles, and similarly

longer composites look like higher simplices. While this construction gives a compelling

visualization of the algebraic structure of a category, if we want to do this sort of thing for

different algebraic structures we will need a way of analyzing what it means to represent

algebraic structure geometrically. Fortunately, there is a definition of categories as algebras

for a monad that provides both the algebraic and geometric interpretations canonically.

3. Nerves to Quasicategories

It is a nice exercise to prove that the nerve functor is fully faithful, meaning that the

data of a functor between two categories is exactly the same as that of a simplicial map

between their nerves. This means that one can think of categories as a special class of

simplicial sets, specifically those sSets X with the property that

Hom(∆n, X)→ Hom(· 1−→ · · · n−→ ·, X)

is a bijection (so every n-simplex comes from a sequence of composable 1-simplices).

Definition 6. Quasicategories are simplicial sets X where the map Hom(∆n, X) →
Hom(· 1−→ · · · n−→ ·, X) need only be a surjection, with some extra coherence conditions.

This means that in a quasicategory, every composable sequence of 1-simplices fits into

an n-simplex whose other edges can be thought of as the various composites of those arrows

including the total composition of the string in the 0n edge. But this n-simplex is not

unique, so we can think of a quasicategory as a category where strings of arrows can have

more than one composite. However, one can prove that any two such composites are faces of

some (n+ 1)-simplex, and any two such (n+ 1)-simplices are faces of some (n+ 2)-simplex

and so on, so the composites form a contractible space in some sense. Quasicategories

are called ∞-categories by many people (not me), because in many important ways they

resemble the (∞, 1)-categories I defined above.

The intuition for this is that unlike nerves of categories, the simplices in dimensions

> 1 are not uniquely determined by their spine of composable edges, so they have their

own meaning and can be thought of as n-cells (without a clear source and target, but
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the best guess would be between the formal composite of the arrows in the spine and the

0n arrow of the simplex). Associativity here seems quite strict, as in an n-simplex any

order of compositions of the edges in the spine will ultimately reach the 0n edge, but the

composition itself has become weak, where n 1-cells no longer have a unique composite but

rather a guarantee of at least one n-cell describing a choice of consistent compositions.

It should not be obvious why this is equivalent to an algebraic weak (∞, 1)-category,

and an answer to this is a research interest of mine, but an informal justification can be given

as follows. An algebraic (∞, 1)-category can be seen as a category (weakly in some sense)

enriched in (∞, 0)-categories, since between any two objects there is an ∞-category with

morphisms as objects where all cells are invertible since they come from cells above dimen-

sion 1 in an (∞, 1)-category. These are called ∞-groupoids, and Grothendieck’s Homotopy

Hypothesis is the claim that these describe all the homotopy information of topological

spaces. So from the perspective of homotopy theory, an (∞, 1)-category is equivalent to a

category enriched in topological spaces or simplicial sets. Simplicially enriched categories

are known to be equivalent to quasicategories via the “Homotopy Coherent Nerve”, which

I will outsource to a reference below.

The punchline here is that simplicial sets can completely describe categories via the

nerve, and relaxing the conditions for a simplicial set to be a category gives something

widely considered to be equivalent to (∞, 1)-categories. We will see that a similar con-

struction works for n > 1, where we construct analogous nerves of strict n-categories,

weaken the properties that define them, and get a way of modeling (∞, n)-categories.

4. A Monad Construction

Definition 7. Recall that a monad is a functor M : C → C along with natural transfor-

mations η : IdC →M , µ : MM →M such that the following diagrams commute:

MMM MM M MM M

MM M M

Mµ

µM µ

Mη

µ

ηM

µ

Definition 8. Further recall that an algebra A for M is a map MA
a−→ A such that the

following diagrams commute:
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MMX MX X MX

MX X X

µX

Ma a

ηX

a

a

We can define categories as algebras for a monad on the category of (directed) graphs,

where I take graphs to mean diagrams E ⇒ V in Set. More precisely, note that the

category of graphs is a contravariant functor (presheaf) category SetGop
=: Ĝ where G is

the category v ⇒s
t e. For a graph X : Gop → Set, we write Xv and Xe for the vertex and

edge sets X(v) and X(e).

The monad we want to consider takes a graph X to the graph underlying the free

category on X. The free category on a graph X has the vertices of X as objects, and has

as morphisms paths in X of finite length (not necessarily nonzero). Composition is by path

concatenation, and identities are the empty paths at each vertex.

Definition 9. Our monad, which I will call M , then sends the graph X to the graph

whose vertices are the same and whose edges are finite length paths in X. The unit map

ηX : X → MX is the identity on vertices and sends an edge in X to the length 1 path

containing just that edge. The multiplication map µX : MMX → MX takes a path in

MX, which is a string of composable paths in X, and concatenates them into a single

path. The monad laws follow from basic properties of path concatenation.

Example 10. Consider the graph 3̃ = v0
e1−→ v1

e2−→ v2
e3−→ v3.

M 3̃ = v0 v1 v2 v3

[]

[e1]

[e1e2]

[e1e2e3]

[]

[e2]

[e2e3]

[]

[e3]

[]

Now we want to see categories as algebras for this monad. For a graph A with an

algebra structure map MA
a−→ A, a sends paths in A to edges in A, which we can think of

as composition. The algebra law for the unit makes sure that a is the identity on vertices,

so composition preserves source and target, and that a sends a length 1 path to the edge

it contains. The law for multiplication makes sure that the composition of a concatenation

of paths is the same as the composite of the compositions of each of those paths. This

property implies that our composition is both associative and unital: if [e1e2e3] is a path of
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compatible edges in A then we have a[a[e1]a[e2e3]] = a[e1e2e3] = a[a[e1e2]a[e3]], and for e an

edge in A with [] the empty path at its source we also have a[a[]a[e]] = a([]+ [e]) = a[e] = e

(and same for the empty path at the target of e). Thus an algebra for this monad is

precisely a category.

Example 11. A nice simple example of an algebra for this monad is the map MM 3̃
µ3̃−→

M 3̃, sending any path in M 3̃, which is a path of paths in 3̃, to its concatenated path. MM 3̃

is infinite (as a path of paths can contain infinitely many empty paths), but this algebra

map would send for instance both [[e1e2]] and [[e1][e2]] to [e1e2], and send [[e1e2][][e3][]] to

[e1e2e3].

Note that we can do this for M 3̃ but not 3̃, since there is no edge in 3̃ for the path

[e1e2] (or any path of length 6= 1) to be sent to by an algebra map, since there is no edge

from v1 to v3. In M 3̃, any path of its edges has exactly one edge with the appropriate

source and target, so the structure map MM 3̃→M 3̃ is unique. In general however, there

may be many possible M -algebra structure maps making a graph into a category, just as

there can be exactly one or none at all.

Remark 12. This may seem rather meta: we are giving something like a definition of a

category using such tools as a monad and the category of graphs, which already use the

notion of categories in their definitions. This is one of the most beautiful aspects of category

theory: that it can use its own techniques to describe itself. Like the analogous situation

in set theory, the reason this is an acceptable thing to do is that we can take whatever

definition of large categories you prefer as our meta-theory, and use that language to give

this particular description of the theory of small categories. What we mean by ‘large’ and

‘small’ here is, again like set theory, rather flexible, but it suffices to accept that one can

use the language of categories to define (or give an alternative characterization of) objects

that behave exactly like categories themselves.

This is a nice way to think about categories because it clearly separates the different

components of what makes up a category. The category of graphs describes the underlying

data of a category, namely objects and morphisms. The functor M (via the algebra map

a) describes the structure put on that data, namely the specification of composites and

identities. The multiplication (via the multiplication property of a) describes the properties

of the structure. The unit map η (via the unit property of a) describes how the structure

acts on the underlying data. The combination of data, structure, and properties is a

powerful perspective on how we define all mathematical things, and monads provide a way

of expressing those things formally.

But how is any of this related to nerves? It turns out this monad can be redefined in
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a way that provides more insight:

Definition 13. I call a functor of the form F : Ĉ → Ĉ familially representable if it sends

X to FX : c 7→ ti∈IcHom(Yc,i, X) for some fixed {Yc,i} with structure maps given by

precomposing with maps between the {Yc,i} in Ĉ componentwise.

I claim that our monad M is familially representable. Let ñ denote the graph with

just n composable edges, 0̃ being the trivial graph with one vertex and no edges. MX has

the same vertices as X, which are given by Hom(0̃, X). The edges of MX are finite paths

in X, which can be partitioned according to their length, where a path of length n is the

image of a map from ñ to X. Therefore the edges of MX are given by tn∈NHom(ñ,X),

and the sources and targets come from precomposing with the source/target maps 0̃ ⇒ ñ.

0̃ = v0

1̃ = v0 v1

2̃ = v0 v1 v2

3̃ = v0 v1 v2 v3

4̃ = v0 v1 v2 v3 v4

e1

e1 e2

e1 e2 e3

e1 e2 e3 e4

We can now see how the algebraic structure of categories comes from the subcategory

of graphs generated by {ñ}. These graphs contain the representable vertex 0̃ and the

representable edge 1̃. Composition sends a copy of any of these graphs in an algebra A to

an edge in A. And for associativity, we can see that these graphs are closed under what

I call shape composition, which is taking one of these graphs ñ and “plugging in” any n

of these graphs to each of the n edges: the graph with n composable edges replaced with,

respectively, the graphs of m1, ..,mn composable edges gives the graph of
∑

imi edges.

This corresponds to what we seen in the definition of µ.

Example 14. The graph 4̃ admits a shape composition with, respectively, 2̃, 0̃, 1̃, 2̃ plugged

in for its edges, and this composition yields the graph 5̃.

· → · → · → · → ·
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·
(
→ · →

)
·
()
·
(
→
)
·
(
→ · →

)
·

· → · → · → · → · → ·

Remark 15. We can even further see that this subcategory is in fact generated by 0̃, 1̃, 2̃

under shape composition, so it is the smallest such subcategory that can encode composi-

tion of two arrows.

Now that we’ve reduced this monad to looking at the subcategory spanned by the

graphs ñ, we can show how this relates to nerves. Take the subcategory of M -algebras

spanned by the algebras MMñ
µ−→ Mñ. For a given n, this algebra is the category n̄, so

this subcategory is precisely ∆! The nerve then takes a category C = MA
a−→ A to the

simplicial set

n̄ 7→ HomCat(n̄, C) = HomCat(Mñ, C) ∼= HomĜ(ñ, A)

where the isomorphism on the right is that of the classical adjunction from a category with

a monad to the category of algebras for the monad. So what the nerve does is separate

out the different components of the piecewise structure of M , where we know that these

form a simplicial set because the morphisms of the simplex category correspond to the

maps on each component given by the algebra structure map a. So we can either describe

this structure algebraically by an algebra map MA → A, or geometrically by a simplicial

structure extending A to the sets HomĜ(ñ, A).

The intuition here is that an algebra map MA
a−→ A tells us how to extend any map

ñ → A to a map Mñ → A by specifying where the composite paths are sent, so we can

add extra structure maps between those sets corresponding to those composites, and also

maps corresponding to composites within a composite of shapes. The category of ñ graphs

with these extra maps added is precisely ∆.

5. Generators for n-categories

We now want to imitate this construction to give us nerves of n-categories. First, we

have to define what is the “data” of an n-category:

Definition 16. An n-graph (or n-globular set) is a functor Gopn → Set, where Gn is the

category generated by e0 ⇒s
t e1 ⇒s

t e2 ⇒ · · · ⇒s
t en with Hom(ei, ej) = {s, t} for i < j

(empty but for identities otherwise) and s; f1; ...; fk = s, t; f1; ...; fk = t.

The representable functors y(en) in Ĝn can be thought of as an n-cell, with the arrows

pointing from s to t:
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y(e0) y(e1) y(e2) y(e3) · · ·

• •

• • • · · ·

• •

s

t

s

t

s

t

One can check that this category precisely describes the n-cells and their inclusions

into one another. So an n-graph has vertices (0-cells), edges (1-cells), edges between

edges (2-cells), and so on up to dimension n edges whose source and target must have the

same source and target in each dimension. A monad construction like the one above then

describes how to put an algebraic structure on an n-graph to make it an n-category.

The above description of the free category monad in terms of the subcategory of ñ

graphs tells us exactly how to proceed. We want our algebra maps to send each of the n

“composition shapes” (as in ways of sticking composable n-cells together) like

• • • • •

in some n-graph X to an n-cell in X in a way that satisfies similar unit and associa-

tivity rules. We will think of these, along with the representables, as generators for the

representing n-graphs of our new monad.

Definition 17. Let Zn be the full subcategory of n-graphs consisting of those n-graphs

generated by the representables and all composition shapes under shape composition.

Here one must pay careful attention to what shape composition means in this more

general setting. While a precise definition can be formulated in terms of certain colimits

indexed by categories of elements, it suffices for our purposes to say the following. Let Zn,k
consist of those n-graphs in Zn with cells only up to dimension k. Closure under shape

composition means that any consistent way of plugging n-graphs in Zn,k into the k-cells of

another n-graph in Zn should give another n-graph in Zn.

Example 18. Here are a few iterations of shape composition in Z2:
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• • •

Starting with a horizontal composite of two 2-cells, we can plug in a vertical composite

into the first and a horizontal composite into the second to get another 2-graph in Z2:

• • • •

We can then plug another vertical composite into the upper leftmost 2-cell, a single

2-cell into the lower leftmost 2-cell, a 1-cell (thought of as a degenerate 2-cell) into the

center 2-cell, and a vertical composite into the rightmost 2-cell:

• • • •

This process can be repeated in any number of ways to give other 2-graphs in Z2,

but ultimately any such 2-graph would be a horizontal composite of j vertical composites

of, respectively, i1, ..., ij 2-cells where ik ∈ N. In the above example, for instance, j = 3,

i1 = 3, i2 = 0, and i3 = 2. It isn’t immediately obvious why all shape compositions of

these 2-graphs would be of this form, but one of the key reasons is that shape composition

only allows for consistent choices of 2-graphs in Z2 plugged into the 2-cells of a diagram.

So starting with a vertical composite and trying to plug in a horizontal composite to the

top 2-cell but a single 2-cell into the bottom one wouldn’t work, since those two diagrams

don’t agree on the middle 1-cell of the vertical composite (the horizontal composite on top

wants that 1-cell replaced with a composite and the single 2-cell on bottom wants it to

be a single 1-cell). One could, however, plug horizontal composites into both the top and

bottom 2-cells, since then the middle 1-cell could consistently be replaced by a composite.

There is a similar characterization of the n-graphs in Zn.

We can now define our monad on n-graphs using {0̃} = Zn,0 ⊂ Zn,1 ⊂ ... ⊂ Zn,n = Zn:

Definition 19. The free n-category monad Mn : Ĝn → Ĝn is given on an n-graph X by

MnXek = tz∈Zn,k
Hom(z,X)

with unit defined by the inclusion of the representables in Zn and multiplication defined

using shape composition just like in the definition of M for n = 1 above.
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Algebras MnA
a−→ A for this monad, like in the case of 1-categories, send each of these

diagrams of (possibly identity) k-cells to a single k-cell, respecting the data and obeying a

version of unit/associativity according to the structure of Zn. These algebras are precisely

the n-categories!

• • ;a • •

• • • ;a • •

Then, just as we saw that the full subcategory consisting of M1Z1 is isomorphic to ∆,

we will see that a natural nerve of n-categories takes values in the category MnZn.

Definition 20. The category Θn is the full subcategory of n-categories consisting of those

algebras of the form Mnz for some z ∈ Zn.

As we discussed in the previous section for the case of n = 1, the subcategory Zn of n-

graphs only has simple inclusion maps between the n-graphs. Extending to Θn adds maps

corresponding to composition: just as ∆ has a map 1̃ = M 1̃ = 1̄ → n̄ = Mñ identifying

the composite of the n edges in ñ, Θn has a similar map from the n-cell to each composite

of n-cells:

• • • •

• • • • •

Here these inclusions should both be thought of as analogous to the map 1̄→ 2̄ in ∆

sending the 1-simplex to the edge between the vertices labeled 0 and 2 in the 2-simplex.

Again in analogy with ∆, there are more maps added to Zn that look like the above maps

applied inside a shape composition, corresponding to composing a single pair of n-cells

within a larger diagram like below:
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• • • • • • • •

Here the analogy is with the maps n̄→ ¯n+ 1 sending the i, i+1 edge in the n-simplex

to the i, i + 2 edge in the n + 1 simplex. These added maps generally correspond to the

inner face maps in ∆ which for nerves of categories witness inner compositions within a

string of morphisms, just as these maps witness inner composition in a diagram of n-cells.

The degeneracy maps have analogues as well, with for each k < m ≤ n a map in Θn

from the k-cell to the m-cell, and similarly to faces all instances of these maps within a

larger shape composite. So Θn is in a sense (which can be made precise in various ways)

a generalization of the simplex category to higher dimensional diagrams. This category is

then the natural index for the functor category where a nerve of n-categories will land in.

Definition 21. For an n-category A, its n-nerve is the Θn-set NnA given by NnA =

HomĜn
(z,A) ∼= HomnCat(Mnz,A).

Like the case of 1-categories, we have that for A an n-category, any diagram in the

underlying graph of a shape z in Zn extends by the Mn-algebra map to a diagram of shape

Mnz, so we can define all of the desired structure maps on the sets HomĜn
(z,A). So the

nerve Nn of A consists of the set of diagrams of shape z in A, for all z in Zn, and these

sets of diagrams are related by all the maps in Θn. These maps correspond to inclusions

of diagrams, compositions within those diagrams, and degeneracies of those diagrams, just

like the maps in ∆ describe 1-dimensional composable diagrams in this way. One can also

show that this nerve functor Nn is fully faithful, by the same argument as in the case n = 1.

This all works for n =∞ as well in exactly the same way just without the upper bound

on dimension. Θ∞ is simply called Θ, and each Θn is often identified with its inclusion

into Θ.

6. Geometric (∞, n)-Categories from Nerves

We can now characterize nerves of n-categories just as we did for 1-categories:

Proposition 22. A Θn-set X is the nerve of an n-category if and only if the map Hom(MnY,X)→
Hom(Y,X) induced by the unit map on Y is a bijection for all Y in Zn.
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This suggests that, in analogy with the definition of quasicategories, weakening this

definition to only require those maps to be surjections (with extra conditions making them

still equivalences) would give a reasonable geometric definition of (∞, n)-categories, called

n-quasicategories, if one is sufficiently content that quasicategories model (∞, 1)-categories.

However, a result of Ara shows that this does not work perfectly when trying to construct

a model category structure on Θn-sets for modeling (∞, n)-categories. A model structure

can be defined just like the one for quasicategories, with these n-quasicategories as the

fibrant cofibrant objects, but not all traditional equivalences of n-categories lift by the

nerve to weak equivalences. These maps can be added to the class of weak equivalences

to get a model structure that matches other models of (∞, n)-categories, but now not all

nerves of n-categories are fibrant. This suggests that the relationship is more complicated

than it may seem!
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