Notes on Fibrations in Type Theory

Andrew K. Hirsch

March 1, 2018

1 Motivation

- 1. We said that we want to think of type families as fibrations
 - (a) That is, we should be able to lift from paths in the base space to paths in the above space
- 2. However, it's not clear what this should mean categorically
- 3. Today: categorical definition of fibration & why we care

2 Type Families as Cat-Valued Functors

- 1. We can think of $z : \mathbb{N} \vdash \text{Vec}(z) : Type$ as a functor two ways
 - (a) $-\vdash -: Type$ takes a context (in this case {z : N}) to a Category
 - (b) $z : \mathbb{N} \vdash \text{Vec}(z) : Type \text{ takes an object } z \text{ of } [\![\mathbb{N}]\!] \text{ to a category, and} a \text{ path in } [\![\mathbb{N}]\!] \text{ to an equivalence of categories}$
- 2. What does the action on morphisms look like in the first case?
 - (a) $\operatorname{Vec}(z)[z \mapsto x+y] = \operatorname{Vec}(x+y)$, so $[z \mapsto x+y]$ should correspond to a functor from $[\operatorname{Vec}(z)]$ to $[\operatorname{Vec}(x+y)]$
 - (b) As a morphism of context, $[z\mapsto x+y]$ corresponds to

$$\{x: \mathbb{N}, y: \mathbb{N}\} \xrightarrow{|z \mapsto x+y|} \{z: \mathbb{N}\}$$

(c) Thus, $-\vdash -: Type$ is a *contravarient* functor $Ctxt^{op} \to Cat$

- 3. Both are contravarient
 - (a) Since $[\![N]\!]$ is a ∞ -groupoid, $[\![N]\!]^{\mathrm{op}} = [\![N]\!]$.
 - (b) So, both are of the form $\mathcal{C}^{\mathrm{op}} \to \mathrm{Cat}$

3 The Grothendieck Completion

- 1. Let $F: \mathcal{C}^{\mathrm{op}} \to \mathrm{Cat}$
 - (a) Write u^* for the functor $F(u) : Fb \to Fa$ when $u : a \to b$
- 2. Build the following category:

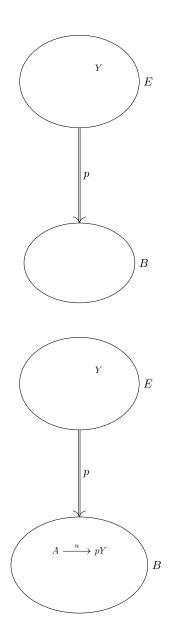
$$\int F = \left\langle \begin{array}{cc} \text{objects}: & (I, X) \text{ where } I \in |\mathcal{C}| \text{ and } X \in |F(I)| \\ \text{morphisms}: & (I, X) \to (J, Y) \text{ are } (u, f) \text{ where } u : I \to J \text{ and } f : X \to u^*(Y) \end{array} \right\rangle$$

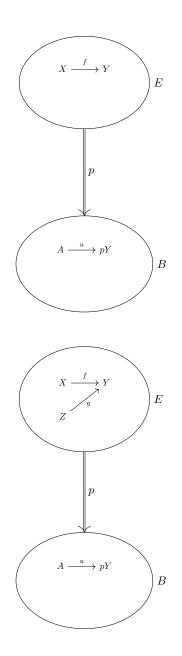
- 3. $\int F$ has all of the structure of the image of F
- 4. The first projection $\int F \to C$ projects down to the base category, collapsing the non-C structure
 - (a) It is a (split) fibration

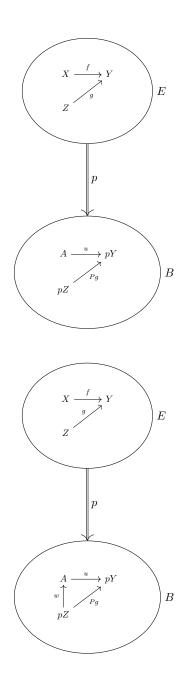
4 The Categorical Definition of Fibration

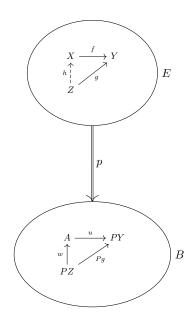
A functor $p: E \to B$ is a fibration if for every $Y \in Ob(E)$ and $u: A \to_B pY$ there is an $X \in Ob(E)$ such that pX = A and a $f: X \to Y$ such that pf = u, and for every $g: Z \to_E Y$ such that there is a morphism $w: PZ \to A$ such that Pg = w; u, there is a unique $h: Z \to X$ such that g = h; f.

1. In diagrams





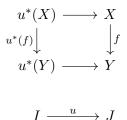




- 2. Vocabulary
 - (a) f is the cartesian lifting of u.
 - (b) (Any f such that pf = u with the universal property above is called *cartesian over* u, even if p is not a fibration.)
- 3. N.B.: Cartesian liftings are not necessarily unique!

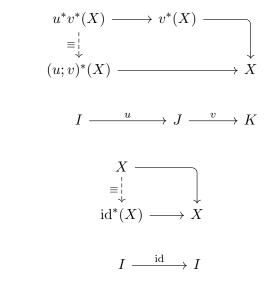
5 Split Fibrations

- 1. Let $p: E \to B$ be a fibration
- 2. If p has chosen liftings $u^*(X) \to X$ for every $u: I \to J$ and X (above J), then p is cloven
- 3. u^* extends into a functor for every u



- 4. However, composition and identity don't work out as one might hope
 - (a) Composition

(b) Identity



5. If these equivalences are identities, then the fibration p is *split*

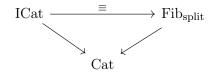
6 The Grothendieck Theorem

- 1. Grothendieck Completion yields a split fibration
 - (a) Let $u: I \to J$ be a morphism in B and (J, Y) be above J in $\int F$
 - (b) We have

$$(I, u^*Y) \xrightarrow{(u,id)} (J,Y)$$

as a chosen lifting of u

- (c) Because F is a functor, clearly this is split
- 2. The Theorem
 - (a) The category of indexed categories is called ICat
 - (b) The category of split fibrations is called Fib_{split}
 - (c) Theorem Statement



- i. \int extends into \equiv
- ii. The other direction comes from finding the fibers of the fibration
 - A. I.e., the categories that are above a single object

7 Consequences for Type Theory

- 1. We can think of type families as fibrations as well as indexed categories
 - (a) Properties versus structure
 - i. See "Categorical Logic and Type Theory"
- 2. If we just try to do indexed categories, just end up using Grothendieck everywhere anyways

- (a) It's very similar to the space of -types
- (b) Might as well just use fibrations from the beginning