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1 Motivation

1. We said that we want to think of type families as fibrations

(a) That is, we should be able to lift from paths in the base space to
paths in the above space

2. However, it’s not clear what this should mean categorically

3. Today: categorical definition of fibration & why we care

2 Type Families as Cat-Valued Functors

1. We can think of z : N ` Vec(z) : Type as a functor two ways

(a) − ` − : Type takes a context (in this case {z : N}) to a Category

(b) z : N ` Vec(z) : Type takes an object z of JNK to a category, and
a path in JNK to an equivalence of categories

2. What does the action on morphisms look like in the first case?

(a) Vec(z)[z 7→ x+ y] = Vec(x+ y), so [z 7→ x+ y] should correspond
to a functor from JVec(z)K to JVec(x+ y)K

(b) As a morphism of context, [z 7→ x+ y] corresponds to

{x : N, y : N} [z 7→x+y]−−−−−→ {z : N}

(c) Thus, − ` − : Type is a contravarient functor Ctxtop → Cat
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3. Both are contravarient

(a) Since JNK is a ∞-groupoid, JNKop = JNK.

(b) So, both are of the form Cop → Cat

3 The Grothendieck Completion

1. Let F : Cop → Cat

(a) Write u∗ for the functor F (u) : Fb→ Fa when u : a→ b

2. Build the following category:∫
F =

〈
objects : (I,X) where I ∈ |C| and X ∈ |F (I)|
morphisms : (I,X)→ (J, Y ) are (u, f) where u : I → J and f : X → u∗(Y )

〉

3.
∫
F has all of the structure of the image of F

4. The first projection
∫
F → C projects down to the base category,

collapsing the non-C structure

(a) It is a (split) fibration

4 The Categorical Definition of Fibration

A functor p : E → B is a fibration if for every Y ∈ Ob(E) and u : A→B pY
there is anX ∈ Ob(E) such that pX = A and a f : X → Y such that pf = u,
and for every g : Z →E Y such that there is a morphism w : PZ → A such
that Pg = w;u, there is a unique h : Z → X such that g = h; f .

1. In diagrams
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2. Vocabulary

(a) f is the cartesian lifting of u.
(b) (Any f such that pf = u with the univeral property above is

called cartesian over u, even if p is not a fibration.)

3. N.B.: Cartesian liftings are not necessarily unique!

5 Split Fibrations

1. Let p : E → B be a fibration

2. If p has chosen liftings u∗(X)→ X for every u : I → J and X (above
J), then p is cloven

3. u∗ extends into a functor for every u

u∗(X) X

u∗(Y ) Y

I J

u∗(f) f

u

4. However, composition and identity don’t work out as one might hope

(a) Composition

u∗v∗(X) v∗(X)

(u; v)∗(X) X

I J K

≡

u v

(b) Identity
X

id∗(X) X

I I

≡

id

7



5. If these equivalences are identities, then the fibration p is split

6 The Grothendieck Theorem

1. Grothendieck Completion yields a split fibration

(a) Let u : I → J be a morphism in B and (J, Y ) be above J in
∫
F

(b) We have

(I, u∗Y )
(u,id)−−−→ (J, Y )

as a chosen lifting of u
(c) Because F is a functor, clearly this is split

2. The Theorem

(a) The category of indexed categories is called ICat
(b) The category of split fibrations is called Fibsplit

(c) Theorem Statement

ICat Fibsplit

Cat

≡

i.
∫

extends into ≡
ii. The other direction comes from finding the fibers of the fi-

bration
A. I.e., the categories that are above a single object

7 Consequences for Type Theory

1. We can think of type families as fibrations as well as indexed categories

(a) Properties versus structure
i. See "Categorical Logic and Type Theory"

2. If we just try to do indexed categories, just end up using Grothendieck
everywhere anyways
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(a) It’s very similar to the space of -types

(b) Might as well just use fibrations from the beginning
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