Notes on a Review of Type Theory for Ho'TT

Andrew K. Hirsch

February 1, 2018

1 Philosophy

1. What is type theory?
(a) A foundation of mathematics in which each object is inseperably
associated with a type
(b) A method of ensuring programs behave correctly

i. Progress: Well-typed programs don’t get stuck
ii. Preservation: Well-typed programs keep their type

(¢) The two are connected via intuitionism and a computaitonal view
of mathematics

2. What is a type?

(a) An object in a type theory

i. In "lower-level" type theories, types and terms are distinct
classes of objects

ii. In dependent type theories (such as HoT'T), types and terms
are the same thing

(b) Types are used to describe the behavior of their associated
terms/objects

i. We say that an object t is an inhabitant of a type 7, and
write ¢ : 7

3. Type Theory versus Set Theory

(a) t: 7 is not a proposition

i. It cannot be predicated upon or negated

(b)

()

ii. We view every object as inhabitating a type by its very nature.

Judgemental = versus propositional = Equality
i. Judgemental equality is mot a proposition, propositional
equality s
ii. Judgemental equality "textual," propositional equality is
"smarter"

A Combination of Logic and Ontology

i. In set theory, set axioms and first-order logic are seperate

ii. In type theory, types give rise to logic and describe our on-
tology

A. Propositions-as-types / Brouwer-Heyting-Kolmogorov (BHK)

interpretation / Curry-Howard Isomorphism

2 Types

1. Function Types

(a)
(b)
()

Behavior: "Can be fed a 7, and will then produce a ¢."
Syntax: 7 — o
Rules:

Nax:tke:o 'kf:7r—o0o F'ke:r
F'FXz:T.e:7—0 't f(e):o

(Az : T.e1)(e2) —p e1[z — e2]

Note that I use ej[x — e3] to denote safe substitution of ey for
x in e1. I use =4 to denote 8 reduction, which gives meaning to
computation in a programming language.

Logically: "If 7, then o."

Categorically: Exponentiation

I''BrFC

—-,B4-B —
r-B—cC

2. Products

(a) Behavior: "Can be constructed from a 7 and a o, can be used in
place of either or both."

(b) Syntax: 7 x o

(c) Rules:
T'ke:r I'Fey:o I'Fei:7x0 Tx:my:oFex:x
'k (e1,e9): T x0 I' - match e; with (x,y) = ez end : x
match (ep,e2) with
(x,y) = e3 —g e3lx > e1,y > eg]
end

Note that I use eg[z — e1,y — es] to denote the simultaneous
safe substitution of z and y.

(d) Logically "7 and o"
(e) Categorically: Products

3. Sums

(a) Behavior "Behaves as either a 7 or a o, but not both."
(b) Syntax: 7+ o
(c¢) Rules:
I'kFe:r I'ke:o
I'tinl(e): 740 I'Finr(e): 740

I'Fei:74+0 Ix:7kFey:x I'y:okFes:x

I' - match e; with | inl(z) = ez | inr(y) = e3 end : x

match inl(e;) with
inl(z) = e
inr(y) = es3
end

—g e[z — eq]

match inr(e;) with
inl(x) = e
inr(y) = es3
end

— g e3ly — e

(d) Logically: "7 or "
e) Categorically: Coproducts
(e) g y

inl inr

A—— A+B+— B

4. Dependent Functions are Infinite Products

(a) “Infinite” here means “for every member of a type”

(b) Behavior: “For every x, an f(z) where conceptually f : 7 — Type”

i. More generally o[z] i.e. some type o with x free
(c) Syntax: Ilz : 7. o[z], alternatively (= : 7) — o We also sometimes

write [[,., olx] or
[Iol

if it makes the syntax clearer.

(d) Rules:
ez:7hko:U Dz:7hke:o[z] 'k f:Mz:7.0 'ke:r
FFlz:70:U F'FXx:1.e:Mlz: 10 I'E fe): o[z e

(Az : T.e1)(e2) —p e1[r — eg]
Note that I use U to represent a “universe,” or a type of types.
(e) Note that 7 — o is just Ilz : 7.0 where o does not depend on x.

(f) Categorically: Deferred for now
5. Dependent Products are Infinite Sums

(a) Behavior: “For every z, it might be an ox]”

(b) Syntax: Yz : 7. o|x], alternatively (z : 7) x 0 We also sometimes

write) ._olx] or
> ola]

XT:T

if it makes the syntax clearer.

(c) Rules:
I't7:U ez:7kFo:U

'YXz :70:U

ket I'key:olr— e] I'kte :Xz:10 Lz:7m,y:0kex:x
't (e1,e2) : Xz : 1.0 I' - match e; with (z,y) = e2 end : x
match (ep,e2) with
(x,y) = e3 —g e3lx e,y — eg]
end

(d) Note that 7 x o is just Xz : 7.0 where o does not depend on x.

(e) Categorically: Deferred for now
6. Inductive Types

(a) Behavior: "Freely algebra over some generators."
(b) An example:
Inductive Nat : U :=

| 0 : Nat
| S : Nat -> Nat.

i. Recursion Principle

I1 ro - (H P(n) — P(S(n))) - [] P
P:Nat—U n:Nat n:Nat

(c) We can "read off" the induction/recursion principal

(d) To make this precise, we need a type of "well-founded trees" with
nodes labelled by a type A and branching factor Bla].

(e) Logically: A well-founded relation
(f) Categorically: An F-Algebra for a polynomial functor F

7. (Propositional) Equality Types
(a) for every type, a type family Idy : A - A — U, so Id4(a,b)
represents equality between a and b.

(b) Behavior: Leibniz equality. "If a is true in some statement, so is
b. Moreover, f(a) = f(b) for any f."

(c) Syntax: a =4 b. We may drop the subscript A if it is clear from
context.

(d) Idg is the inductive type family generated by constructors
refl(a) : a =4 a.

(e) View one: Uniqueness of Identity Proofs (UIP).

.
ii.

iii.

If m:a=40b, then ™ = refl(a).
This is not compatable with HoTT!
True in (unmodified) Agda.

A. You need to be careful to define dependent pattern
matching that does not prove this.

(f) View two: Path induction

1.

ii.

1il.

v.

Think of a =4 b as a path from a to b in some space.

Given a family
C: H(a =az)—>U
x:A

and
c: C(a,refl(a)),
there is an
f: H H C(z,m)
r:A TIa=T
such that

f(a,refl(a)) = c.

Note: We can prove by path induction on 7 : £ = y that
(z,y,p) =5 yen T=Y (z,z,refl(z)).

Homotopically: the space of paths starting at a point z is
contractable to the constant loop on x.

Note: We cannot work over equalities with two fixed end-
points, so we cannot prove that every proof that x = x is by
reflexivity.

(g) Categorically: Isomorphism

3 Computational Trinitarianism

“The Christian doctrine of trinitarianism states that there is one God
that is manifest in three persons, the Father, the Son, and the Holy Spirit,
who together form the Holy Trinity. The doctrine of computational trini-
tarianism holds that computation manifests itself in three forms: proofs
of propositions, programs of a type, and mappings between structures.
These three aspects give rise to three sects of worship: Logic, which gives
primacy to proofs and propositions; Languages, which gives primacy to
programs and types; Categories, which gives primacy to mappings and
structures. The central dogma of computational trinitarianism holds
that Logic, Languages, and Categories are but three manifestations of
one divine notion of computation. There is no preferred route to enlight-
enment: each aspect provides insights that comprise the experience of
computation in our lives.”

— Robert Harper
https://existentialtype.wordpress.com/2011/03/27/the-holy-trinity/

1. Programs, proofs, and mappings between structures are all the same
thing

Programs

Mappings Proofs

2. HoTT rises a question: Should we have Computational Quadrinarian-
ism, with Homotopies being a fourth equal member?

4 If we have time: Hyperdoctrines

1. Categorically, II- and >-types are given meaning via hyperdoctrines.

2. Categorical setup: A category per context. Objects are types, and

morphisms 7 — o in the category for I, C(I') are e that T,z : 7 Fe: o

. There is an "extension" functor 7% : C(T') — C(T,y : 7)
(a) It ignores the extra

. You might recognize this as a particular fibration. This is the basic
setup for categorical logic.

. Consider the case where >, A1 4[]

From Adjunction From Logic and Type Theory
m lo —p Ly:m,x:0bp y is not free in I', o
o — Hp I' ok Hp
T YT
TO’—)?TT_I,O ly:m,x:0kp y is not free in I, p
Za—>p Yy:m.0Fp
=

(a) Note: These are equivalent to the rules for the appropriate con-
structor/destructor in type theory!

	Philosophy
	Types
	Computational Trinitarianism
	If we have time: Hyperdoctrines

