
Category Theory & Functional Data Abstraction

Brandon Shapiro

Math 100b

1. Introduction

Throughout mathematics, particularly algebra, there are numerous commonalities between the

studies of various objects and ideas. For instance, the topics of sets, groups, rings, modules, and

fields, among others, all expand on just a few basic ideas. In each case there is a notion of a

substructure (e.g. subset, subgroup), as well as functions between objects (e.g. homomorphisms).

Category theory can be thought of as a framework for analyzing the relationships between some of

these ideas. It allows expansive classes of mathematical objects to be considered in the same light,

through basic principles general enough to be applied to a broad selection of mathematical objects

across multiple fields of study. From category theory comes a notion of ”natural transformations,”

giving precise meaning to many ideas otherwise only clear through intuition. However, here the

focus will be on how certain examples of category theory relate to interesting forms of computation-

ally representable data. These relationships between data types and mathematical objects allow

for incredibly powerful computational techniques. In fact, from one categorical concept in partic-

ular arises an entire programming idiom incredibly useful for working within specialized forms of

data. While it would be nearly impossible to properly describe the full context of these connections

in a single paper, category theory provides an abstract mathematical lens through which these

computational ideas can be expressed.

2. Categories

A category is a collection of objects with arrows between them (the arrows are often called

morphisms), with the following properties:

• Let HomC(X,Y) be the set of all morphisms in category C from object X to object Y

(written as Hom(X,Y) when the category is clear from context). Similarly to functions,

morphisms can be composed. That is, if C is a category and X, Y , and Z are objects in C

with f ∈ HomC(X,Y) and g ∈ HomC(Y,Z), then there exists a morphism f ◦ g, or simply

fg, in HomC(X,Z).

• The sets of morphisms between two distinct pairs of objects are disjoint.

• Morphism composition is associative.

• For every object X in C, there is an identity morphism 1X ∈ HomC(X,X). For any

f ∈ HomC(X,Y) and g ∈ HomC(Y,X), f ◦ 1X = f and 1X ◦ g = g.

Many examples of categories come from familiar algebraic objects.

– 2 –

1. Let Set denote the category of all sets, with functions between sets as the morphisms. That

is, for sets A and B, Hom(A,B) is the set of all functions from A to B, and composition

of morphisms is simply composition of functions (which is associative). Every set A has an

identity morphism 1A in the identity function from A to A.

2. All groups also form a category, Grp, with group homomorphisms as its morphisms. Just

like functions in Set, group homomorphisms are composable and every group has an identity

homomorphism to itself.

3. Similarly, categories of rings (Ring) and R-modules (R-mod for some ring R) can be formed

with ring and module homomorphisms as morphisms (respectively).

4. A subcategory of category C is a category with all of its objects and morphisms contained

in C. Finite sets and the functions between them form a subcategory of Set, and abelian

groups are a subcategory of Grp. Fields form a subcategory of the category of commutative

rings, which is itself a subcategory of Ring.

3. Functors

A functor can be thought of as a structure preserving map between categories. More precisely,

given categories C and D, a covariant functor is a function F : C→ D that sends the objects of C

to objects in D, and sends the morphisms in C to morphisms in D such that if f ∈ HomC(X,Y),

F(f) ∈ HomD(F(X),F(Y)). A functor must also have the following properties:

• F(1X) = 1F(X)

• F(f ◦ g) = F(f) ◦ F(g)

A contravariant functor is defined similarly, but while covariant functors preserve the structure

of arrows in C, contravariant functors reverse those arrows. Specifically, if f ∈ HomC(X,Y), then

F(f) ∈ HomD(F(Y),F(X)), and F(f ◦ g) = F(g) ◦ F(f).

Some basic functors come from the previously discussed categories of algebraic objects. While

it is not explicitly done here, verifying that these examples satisfy the functor laws is trivial.

1. The identity functor from C to C sends every object and morphism in C to itself.

2. Let F be a map from Grp to Set sending groups (which are of course sets) and homomor-

phisms (which are functions) in Grp to themselves in Set. F is a functor from Grp to

Set called the ‘forgetful functor’, as it sends groups and homomorphisms, which have struc-

ture, to sets and functions without that structure (so some information is lost, or forgotten).

Similarly, forgetful functors exist from Ring and R-mod to Grp and to Set.

A functor from a category to itself is called an endofunctor. An obvious example of an endo-

functor is the identity functor. The following sections will introduce some less trivial endofunctors

of Set that arise very frequently in computer science.

– 3 –

4. Data Types & Maybe

In computer programming languages, a data type is a set of elements that can be represented

by a computer (finitely in binary) in the same way. Two of the most common data types are in-

tegers (Z) and real numbers (R), which have straightforward binary representations. In real-world

computing, memory is finite, so only numbers up to a certain size can be handled (and in the case

of the reals up to a certain decimal precision), but these limitations are usually not important in

an abstract discussion of data types. Mathematically, a data type can be treated just as a set (with

the specific sets considered often chosen to correspond with commonly used data types in computer

science). Categorical results about sets in many cases translate to powerful ways of reasoning about

computational data types.

Consider then the category Set, with all sets as objects and functions between those sets

as morphisms. Define the function

Maybe : Set→ Set

Maybe(A) = A ∪ {Nothing}

Here Nothing is simply a single additional set element. To better understand why the name

Maybe is used, consider Maybe(Z). If x ∈ Maybe(Z), then x is either an integer or Nothing, so

x is maybe an integer. Maybe is particularly useful for defining ‘safe’ versions of partial functions,

which are functions that have no image for certain elements of the domain set. For example, the

reciprocal function is from the real numbers to the real numbers, but the reciprocal of zero is

undefined. This function can be expressed as a ‘total’ function (one that is not partial) using the

maybe real numbers as follows.

f : R→Maybe(R)

f(0) = Nothing

f(x) = 1/x (x 6= 0)

Instead of returning a real number for only a subset of the domain, this reciprocal function

always returns a maybe real number. If the input is nonzero, the output is real; otherwise it returns

Nothing. Redefining partial functions in this manner is very useful in computing, as instead of

generating an error when the function is called on an inconvenient input (such as 0 in the case of

reciprocal), the function still returns a value, Nothing, which can then be handled by a program-

mer however he or she chooses. More complicated computations involving Maybe types generally

involve multiple functions and interaction between different Maybe sets, which motivates a cate-

gorical perspective on Maybe.

The Maybe function can in fact define a functor (more specifically an endofunctor) from

Set to Set that maps every set A to the set Maybe(A), given a suitable mapping for the mor-

phisms of Set (functions). In order to differentiate between the functorial mapping of functions

as morphisms in the category Set and the functorial mapping of functions as members of some

set of functions (which would of course be an object in Set), the function applying the functor to

– 4 –

morphisms shall be called Mmap instead of Maybe. Mmap needs to send functions from one set

(A) to another (B) to functions from Maybe(A) to Maybe(B) such that the (covariant) functor

laws are satisfied. It can be shown that, for unspecified sets A and B, the only such definition of

Mmap is as follows.

Mmap : Hom(A,B)→ Hom(Maybe(A),Maybe(B))

Mmap(f)(Nothing) = Nothing

Mmap(f)(x) = f(x) (x 6= Nothing)

Mmap essentially extends a function from A to B to send Nothing to Nothing, resulting in a

function from Maybe(A) to Maybe(B). It should be clear then that Mmap(1A) = 1Maybe(A), as

Mmap(1A) is by definition the identity when acting on elements of A, and the only other element

of Maybe(A) is Nothing, which is sent to itself. It is easy to show that the composition law for

functors is also satisfied. Maybe and Mmap together then define a covariant endofunctor on Set.

5. List

Another very useful endofunctor on Set sends each set to the set of all possible ‘lists’ of

elements in the set, defined recursively as follows.

List : Set→ Set

List(A) = {()} ∪ {(x, xlist)|x ∈ A, xlist ∈ List(A)}

Elements of List(A) are called lists (of elements in A), and the element () is called the empty

list. Every element of List(A) is either the empty list or a pair of an element of A and a list of

elements in A (which may or may not be empty). Below are some examples of lists.

(1, (2, (3, (4, ())))) ∈ List(Z)

(1/2, (Nothing, (1/4, ()))) ∈ List(Maybe(Q))

(1, 2, 3, 4) ∈ List(Z) (This is a more convenient notation for the first list)

Lists are fundamental structures in computer science, used for everything from computational

puzzle solving to automatically translating written code into machine language. Functions that

filter out certain elements in a list, reduce a list of elements to a single one (e.g. the cumulative

sum or product of a list of numbers), or merge together multiple lists are among the numerous

means of using lists for a variety of powerful computations. One of the most useful functions on

lists is that used to define the List functor.

Just as with the Maybe functor, a functorial definition of List requires a means of sending

functions between sets to functions between the corresponding sets of lists. This can be accom-

plished using the Lmap function (named distinctly from List to distinguish from dealing with lists

of functions), defined recursively as follows.

– 5 –

Lmap : Hom(A,B)→ Hom(List(A),List(B))

Lmap(f)(()) = ()

Lmap(f)((x, xlist)) = (f(x),Lmap(f)(xlist))

For f(x) = x2, Lmap(f)((1, 2, 3, 4)) = (1, 4, 9, 16)

Lmap sends functions from set A to set B to functions from lists of elements in A to lists in el-

ements of B by applying the input function to each successive element in a list. The computational

power of Lmap is not difficult to see, as it allows for easy generation of interesting lists (such as

the first 4 squares as shown above) from simpler ones. In programming languages that can handle

infinite lists (such as Haskell), Lmap can be used to generate lists of all squares, all powers of 2,

all digits of π, and more (though such a list could not be fully displayed in finite time).

Lmap(id) is the identity function on lists, as each element of the list is sent to itself, so the

first functor law is satisfied. Similarly, Lmap(f ◦ g) = Lmap(f) ◦Lmap(g), as composing Lmap(f)

with Lmap(g) sends each element x in the list to f(g(x)), which is exactly what Lmap(f ◦ g) does.

List (along with Lmap) is therefore an endofunctor on the category Set.

6. Applicative Functors

In each of the two previous sections, the implications of applying an endofunctor of Set to a

set of functions was carefully avoided. However, the image of a set of a set of functions under an

endofunctor such as List or Maybe can have very rich interactions with the images of the domain

and codomain sets of those functions. As has been the theme, these interactions have powerful uses

in computation.

For the purpose of simplicity, only the case of endofunctors of Set shall be discussed. An

applicative functor is a functor for which the following function can be defined.

Fsplat : F(Hom(A,B))→ Hom(F(A),F(B))

Fsplat takes elements of image under F of the set of functions from A to B to functions from

the sets F(A) to F(B) (the name Fsplat is derived from what the analogous function is referred to

in the programming language Haskell, which captures the spirit of the function rather well). Addi-

tionally, an applicative functor must satisfy certain properties involving identity, composition, and

application, but these properties involve mappings from elements of Hom(A,B) to F(Hom(A,B)),

which would be unnecessary and tedious to go into. It shall be noted in the examples that follow

how Fsplat can generally be defined in any number of ways, and taken on faith (as well as justified

intuition) that the definition(s) chosen to best preserve information do in fact obey the rules.

Consider the set Maybe(Hom(A,B)) = Hom(A,B) ∪ {Nothing}. An elements of this set

is maybe a function from set A to set B, in that it is either a function from A to B or Nothing.

– 6 –

Defining Fsplat forMaybe (which will be calledMsplat) requires deciding how to apply a maybe

function to a maybe argument. As with Mmap, there is only one such valid (under the unstated

applicative functor laws) definition. For f 6= Nothing & x 6= Nothing:

Msplat :Maybe(Hom(A,B))→ Hom(Maybe(A),Maybe(B))

Msplat(Nothing)() =Msplat()(Nothing) = Nothing

where indicates any argument

Msplat(f)(x) = f(x)

In other words, Msplat(f)(x) is just f(x) if both f and x are not Nothing, otherwise it is

Nothing. Msplat can alternatively be thought of as a function of two arguments, a maybe function

f and an element x of Maybe(A), that returns an element of Maybe(B). If either argument is

Nothing, Msplat returns Nothing, otherwise it returns f applied to x, so Msplat acts like a

Nothing preserving version of function application. Msplat can be used to define multivariable

functions on Maybe sets. Consider the following function.

addTo : Z→ Hom(Z,Z)

addTo(x) = f where f(y) = x+ y

Recall Mmap from section 4, which sends functions between sets to functions between the

respective Maybe sets. Applying it to addTo gives the following signature.

Mmap(addTo) :Maybe(Z)→Maybe(Hom(Z,Z))

Mmap(addTo)(x) is then a maybe function from Z to Z, equal to Nothing if x is Nothing,

otherwise equal to addTo(x). Applying Msplat to this maybe function gives

Msplat(Mmap(addTo)(x)) :Maybe(Z)→Maybe(Z)

Msplat(Mmap(addTo)(x))(y) = x+ y if x 6= Nothing & y 6= Nothing

Otherwise, Msplat(Mmap(addTo)(x))(y) = Nothing

This is a Nothing preserving addition of maybe integers! Traditional mathematical function

notation makes it look very clunky, but infix operators and a slightly less familiar paradigm for

thinking about multivariable functions allow the same function as defined above to be expressed in

the functional programming language Haskell as follows.

addMaybe :: Maybe Integer -> Maybe Integer -> Maybe Integer

addMaybe x y = (+) <$> x <*> y

While it would take far too long to explain the syntax above in its entirety, the key points

are that addMaybe sends two maybe integers to another maybe integer using either addition or

propogation of Nothing, <$> is an infix version ofMmap, and <*> is an infix version ofMsplat.

Both Mmap and Msplat are used here in the two argument sense described above for Msplat

– 7 –

(however in Haskell there is no distinction). It is noteworthy that the ‘(+)’ could easily be replaced

with any other binary operation on integers to make a Nothing preserving version of it, just as the

process of defining the function mathematically above could be replicated for any binary function.

List is also an applicative functor. Defining Fsplat for lists (Lsplat) requires deciding how

to apply a list of functions to a list of arguments. One could easily find many such functions, but

consider two in particular (which conveniently satisfy the mysterious applicative functor laws).

Lsplat1 : List(Hom(A,B))→ Hom(List(A),List(B))

Lsplat1(())() = Lsplat1()(()) = ()

Lsplat1((f, flist))((x, xlist)) = (f(x),Lsplat1(flist)(xlist))

Lsplat1 of a list of functions applied to a list of arguments essentially zips the two together,

applying each function to its corresponding element in the argument list, until either list reaches

its end (the empty list), at which point it cuts off.

Lsplat1((sin, cos, tan))((π/2, π/3, 0, 2, 5, 3)) = (1, 1/2, 0)

Lsplat1((x2, x3, x4, x5))((4, 3, 2)) = (16, 27, 16)

While this definition can be useful for applying different functions to different entries in a list

all at once, there is nothing sacred about only applying the first function to the first argument

and so on. This definition also results in functions or elements getting left out when the lists of

functions and arguments are not the same length. While it would be difficult to write out concisely,

a different function Lsplat2, with the same signature, can be defined so that Lsplat2(flist)(xlist)
takes the Cartesian product of the functions of flist with the arguments of xlist, applying each

function to each argument and concatenating the results into a list. The resulting list contains

every possible value obtained by applying some function in flist to some argument in xlist, so no

information at all is lost. This definition is generally considered more powerful than the first. List
can also support the ‘next level’ of categorical structure used in programming with endofunctors of

Set, called monads, but only by using an analog of Lsplat2 (Lsplat1 does not make List a monad).

7. Conclusion

Category theory is an exciting lens through which to consider broad topics in mathematics,

as the patterns and common ideas between different objects and even different fields of study can

be rigorously defined and examined. It also provides a mathematical perspective on advanced

programming methods used in typed functional programming languages (such as Haskell) to do

incredible things with functions and data structures by assigning categorical meaning to types of

computationally representable data (by considering them as objects in Set). This intersection

of mathematics and computer science allows both subjects to learn from each other’s ideas and

techniques in exciting ways.

– 8 –

8. Sources

Abstract Algebra by Dummit and Foote

http://en.wikibooks.org/wiki/Haskell/Category theory

Lectures by and conversations with Kenny Foner

