
Representability of Homotopy Groups in Type Theory

Brandon Shapiro

Constructive Type Theory

The emerging field of homotopy type theory is built around the idea that in ‘intensive’ type

theory types can be meaningfully interpreted as topological spaces up to a kind of deformation called

‘homotopy’. This correspondence is valuable both for type theorists, who can benefit from applying

intuition from topological ideas to types, and for more traditional mathematicians, who can write

formally verifiable proofs of classically complicated results by defining topological spaces as ‘higher

inductive types’. It is therefore desirable for computer scientists to have a basic understanding of

homotopy theory, a topic rather difficult to find in basic math classes (it would not be unusual for

this kind of homotopy theory to appear in a third or fourth topology course).

A basic fact in homotopy theory is that the fundamental group of a topological space X, which

describes the structure of deformable loops in X, has two equivalent definitions. The first approach

considers the ‘loop space’ Ω(X) consisting of all loops based at a point in X, and defines the

fundamental group π1(X) as the set π0(Ω(X)) of ‘connected components’ of the loop space. The

second approach avoids having to work with loop spaces by instead defining the fundamental group

as the set [S1, X] of based continuous functions from the circle into X considered up to ‘homotopy’,

meaning continuous deformations of functions.

I will develop the background necessary to demonstrate that this equivalence of definitions of

homotopy groups is valid for types. We will see that the type theoretic definitions of the circle,

higher dimensional spheres, and loop spaces make this equivalence practically trivial, but nonethe-

less a valuable illustration of how higher inductive types and recursion principles from type theory

are valuable tools for reasoning about topological ideas. While these ideas are straightforward to

infer from the presentation of homotopy type theory in [1], to my knowledge they do not appear

in that text.

This paper is organized as follows: Section 1 establishes notation (all from [1]) for standard

type theoretic constructions. Section 2 discusses recursion principles which will be essential to

the main result. Section 3 explains how identity types give rise to the homotopy interpretation of

type theory. Section 4 establishes some basic definitions regarding pointed types that arise in the

statement of the main result. Section 5 introduces the Univalence Axiom and uses it to characterize

equality of types and pointed types. Section 6 introduces the higher inductive types corresponding

to the circle and higher spheres. Sections 7-9 cover the main result on equivalent definitions of

homotopy groups, first for loop spaces, then the set of connected components, and finally for the

group structure. As this is an expository paper, in certain places I forgo some technical proof

details when they aren’t essential to understand the main ideas in play.

1. Type Theory Notation

I follow the notation of [1], writing 0, 1, A× B, A + B, A → B for the empty type, the unit

type, the product type of types A and B, the sum type of A and B, and type of functions from A

– 2 –

to B. U will refer to the universe type whose elements are types including all types considered here

(except U itself and the type Ũ of pointed types). In this paper only one universe will be necessary.

Whereas functions from a type A traditionally take values in a single type B, it is often

convenient for the type of the value to depend on the input: for any function B : A→ U associating

a type to each element of A, we can define a ‘dependent function’ as an assignment of an element of

B(a) for each a : A. The type of such dependent functions is written
∏
a:A

B(a), a notation justified

by the idea that such an assignment is no different from an iterated product over the type A of the

types B(a).

In a similar vein, for such a B : A → U , we have the dependent sum type
∑
a:A

B(a) with

elements of the form (a, b) with b : B(a). Here the notation is similarly justified by the idea of a

sum indexed over A of the types B(a). To minimize redundant symbols, I will write
∏

a,b:A

for
∏
a:A

∏
b:A

and the same for dependent sums.

For a type A with elements a, b : A, a =A b (or simply a = b when the encompassing type A is

clear) will denote the ‘identity type’ of a and b in A. The intuition for this notation is that a = b is

inhabited precisely when a and b are equal in A. However, we shall see that this notion of equality

in a type is somewhat looser than the analogous notion for sets, as suggested by the possibility of

inhabited identity types with multiple elements (this is the ‘intensional’ approach to type theory).

One way of thinking about this is that elements of a = b (sometimes called equalities) correspond

to proofs of or ‘witnesses to’ the equality of a and b. These types are generated in a sense (to be

explained in more detail in the next section) by the elements refla : a = a for all a : A. These

elements provide a formal statement of the obvious fact that in any type an element a is equal to

itself (though we will see types in which there are also nontrivial elements of this type).

Identity types provide the clearest example of types corresponding to logical propositions.

“a =A b” makes sense both as a logical statement and a type, and this will generally be the case

for propositions regarding types. Accordingly, the type constructors 0, 1, ×, +, →,
∏

, and
∑

correspond respectively to the logical constructs false, true, and, or, implies, forall, and exists.

For instance, the statement “for all b in B there exists a a in A such that f(a) is equal to b can

be expressed as the type
∏
b:B

∑
a:A

f(a) = b, an element of which provides for each b : B an element

a : A and witness to the equality of f(a) and b. We will follow the convention of type theory and

express our propositions as types, proving them by constructing an element of the type.

As equality in the sense of a =A b is in the internal language of our type theory, we will avoid

ambiguity by writing Name := thing to define the term Name as the thing on the other end of the

:=, and then Name ≡ thing to indicate that Name and thing are the same by definition outside

the language of type theory (so Name ≡ thing is a statement in English about type theory that is

not a type). If we have a ≡ b, then it is valid to replace b with a in any expression containing b, so

that for instance refla : a = b as (a = a) ≡ (a = b). We will call this definitial equality ‘judgmental

equality’ and the type theoretic equality described by the type a =A b ‘propositional equality’.

– 3 –

2. Recursion Principles

Typically, the definition of a type A specifies how to construct elements of A. However, in

order to ‘do anything’ with those elements, one must know how to construct functions from A

to other types. A recursion principle for a type A characterizes these functions completely and

uniquely for the types we will consider (‘inductive types’).

For instance, the recursion principle for the type A + B states that for a type C, functions

A+B → C correspond to pairs of functions A→ C and B → C. That for A×B says that functions

A×B → C correspond to functions A→ (B → C). As an even simpler example, functions 1→ C

correspond to simply elements of C, so to specify a function from 1 to C, one just needs to choose

an element of C for the unique element of 1 to be sent to.

Even more powerful are induction principles, which characterize dependent functions out of

types the same way recursion principles do for non-dependent functions. For the purposes of

this paper, it will only be necessary to discuss the induction principle for the family of identity

types of a type: given a dependent function C :
∏

a,b:A

(
(a =A b) → U

)
, to specify an element of∏

a,b:A

∏
p:a=b

C(x, y, p) it suffices to give an element of
∏
a:A

C(a, a, refla). In other words, interpreting

C(a, b, p) as a proposition depending on a, b, and p, to prove something about the elements of all

identity types of A it suffices to prove it for those of the form refla. It is a subtle point that the

property (C) in question must range over all identity types in A, in that propositions about all

elements of just a = a cannot be proven using only the case of refla. We will see examples of this

sort of proof in the next section.

3. Equality and Paths

Classically, a notion of equality must be reflexive, symmetric, and transitive. While our ‘propo-

sitional’ equality in terms of identity types is not a priori required to conform to these standards, it

does so in a way that suggests a rich structure underlying our notion of a type. Identity types as de-

fined by the properties discussed above obey type theoretic translations of each of these properties

of equality for any type A:

Lemma 1. (Reflexivity)
∏
a:A

a = a

Proof Clearly λ(a : A).refla :
∏
a:A

a = a. ut

Lemma 2. (Symmetry)
∏

a,b:A

(a = b)→ (b = a)

Proof Rewriting the statement as a dependent function on a = b (where the function into U is

constant at b = a) we want to show
∏

a,b:A

∏
p:a=b

b = a. Now using the induction principle for identity

types we can assume that a and b are the same (say a) and that p is refla. It then only remains

to construct an element of (a, a), which can be chosen to be refla. ut

– 4 –

For p : a = b, we write p−1 for its image in b = a, called the ‘inverse’ of p.

Lemma 3. (Transitivity)
∏

a,b,c:A

(a = b)→ (b = c)→ (a = c)

Proof This time more informally, we can assume by the induction principle that a ≡ b and

that for p : a→ b and q : b→ c, we have p ≡ refla. Then (a = c) ≡ (b = c), so we have an element

of a = c in q. ut

We will write p · q for the element of a = c obtained from p and q. Equality in types is

now shown to be type theoretically reflexive, symmetric and transitive. But these properties are

expressed as functions in such a way that, if a, b, c are all the same element, look a lot like the

operations of a group: refla could be the identity, p−1 the inverse of an element p : a = a, and

the transitivity function the group multiplication. In fact, we have that p · p−1 = refla as well as

other equalities corresponding to the identity, inverse, and associativity properties of a group, all

of which are straightforward to prove using the induction principle.

But these operations are defined on the entire family of identity types for A, which looks less

like a group as only compatible (or rather composable as this mirrors the conditions for function

composition) elements can be ‘multiplied’ using transitivity. This gives a type and its identities

a structure reminiscent of a groupoid: a collection of objects and arrows between them where

each object has an identity arrow, each arrow has an inverse pointing in the opposite direction, and

arrows can be composed associatively with the identities and inverses behaving as one would expect

in a group. A group is simply a groupoid with a single object, where the elements of the group are

the arrows from that object to itself (which by definition include an identity and inverses).

But we don’t quite have a groupoid. Statements of equality like p · p−1 = refla are identity

types of the identity type a =A a, and while we can prove them to be occupied, establishing the

propositional equality of p · p−1 and refla, we have no reason to assume that they are occupied by

elements of the form reflrefla . That is, they are not judgmental equalities. p ·p−1 and refla are two

different elements of a = a which are equal only under our weaker notion of propositional equality.

We say then that a type A and its identity types satisfy the groupoid laws only ‘up to higher

identities’. And this structure extends through each nested level of identity type: at the top the

type A, its identity types like a = a, its identity types like p ·p−1 = refla, identity types within that

type, and so on. Each forms a groupoid up to higher identities, so in total a type has interacting

groupoid structures at each nested level of equalities. We say then that types correspond to ‘weak

∞-groupoids.

This is where the topological interpretation arises, as the ‘homotopy information’ of a topolog-

ical space is naturally described by a weak∞-groupoid. Consider a space X (for instance a sphere,

or Euclidean 3-d space, or any weird higher dimensional shape). Just like a type, X has elements,

called ‘points’. And between any two points are (potentially) paths connecting them, which we

will take to be analogous to elements of the identity types. Paths are transitive in the sense that

a path from point x to y and one from y to z concatenate to get a path from x to z, have inverses

by reversing the direction of a path, and reflexive in that any point has a path to itself that just

stays in the same place. In our repeated example, for a path p from x to y the path p · p−1 which

goes from x to y then back the way it came to x is clearly not the same as the path which stays at

– 5 –

x, but p · p−1 can be shrunk back along itself from y to x until it is just the point at x. This kind

of deformation is called a homotopy from p · p−1 to the constant path at x, which acts like a path

between the two paths. There can also be homotopies between different homotopies, and between

those homotopies, and so on. This associates to X a weak ∞-groupoid and suggests a powerful

interpretation of equality in types.

This construction of a ‘fundamental ∞-groupoid’ of a space can go both ways. Given a type

A, its identity types, their identity types, and so on, one can imagine a space with points the

elements of A, paths between the appropriate points for each element of an identity type of A, a

filled in surface between two paths whenever they are equal in the appropriate identity type, a 3-d

filling between two of those for an equality in an identity type of an identity type of A, and so on,

constructing a space where paths correspond to equalities in A, paths between paths correspond

to equalities between equalities, and so on. This is how types can be thought of as spaces.

As a simple example, the type 1 has a single element ∗, a single element refl∗ : ∗ =1 ∗, and so

on. As a space, 1 is the space with a single point. Equalities of the form refl∗ are constant paths

at ∗, and all higher paths take the same form, so the single point can really be taken as the entire

space corresponding to 1. More interesting examples will arise in section 6.

Lastly, we have a proposition (easily proven by the induction principle for identity types) that

guarantees functions between types behave like continuous functions between spaces, in that they

send paths to paths:

Proposition 4. For types A,B, elements a, b : A, equality p : a =A b, and function f : A → B,

there is an equality f(p) : f(a) =B f(b). In other words, functions preserve propositional equality.

4. Pointed Types

It will be convenient to focus on types which come with a specified base element. Given a

universe of types U , it is easy to describe a type of ‘pointed types’, consisting of all combinations

of a type and an element of the type.

Definition 5. The universe of pointed types is the type Ũ :=
∑
A∈U

A, with elements of the form

(A, a) where a : A

Now that we have pointed types, it is reasonable to define a pointed type of pointed functions

between them.

Definition 6. For pointed types (A, a) and (B, b) define

(A, a)→∗ (B, b) := (
∑

f :A→B

f(a) = b, (λ(a : A).b))

Given a pointed type, we can consider the identity type at the basepoint, consisting of equalities

from the basepoint to itself. In the topological interpretation, these equalities take the form of loops

in the space, based at the basepoint.

– 6 –

Definition 7. The loop space Ω(A, a) := (a =A a, refla), and for n > 1 Ωn(A, a) := Ω(Ωn−1(A, a))

The loop space has a natural basepoint given by the constant loop at the basepoint of the space,

for types given by refla. Note that for iterated loop spaces the definition unwraps to something

looking like Ω3(A, a) = (reflrefla = reflrefla , reflreflrefla). I will write reflna for reflrefln−1
a

where

refl1a = refla.

5. Equivalence and Univalence

Our main result will be that two different (pointed) types describing the loops in a type are

the same. But what does that mean in type theory? Typically two mathematical objects are

considered the same (or isomorphic) if there is an invertible function from one to the other. But

defining inverse functions requires understanding when a function is ‘equal’ to the identity, and as

of yet we have no type theoretic way of comparing two functions.

Definition 8. For types A,B : U and functions f, g : A → B, we define the type of ‘homotopies’

from f to g as (f ∼ g) :=
∏
a:A

f(a) = g(a)

Type theoretically this looks like the statement that f and g act the same on each element of

A up to propositional equality. But as we have discussed propositional equality is a weaker notion

than we are used to, so the topological interpretation is helpful here: a homotopy from f to g is a

continuous family of paths from f(a) to g(a) for all a : A.

Now that we have a notion of similarity for functions, we can define equivalences between types

as follows, writing idA for the identity function on the type A:

Definition 9. A function f : A → B is an equivalence if there exists a function g : B → A such

that f ◦ g ∼ idB and g ◦ f ∼ idA. The type of equivalences from A to B is then (A ' B) :=∑
f :A→B

∑
g:B→A

(f ◦ g ∼ idB)× (g ◦ f ∼ idA)

We now have ways of comparing both types and functions between them. But functions form

a type and types belong to the type U , there are already notions of equality between functions

and types, namely f =(A→B) g and A =U B. It is natural to ask when are two types or functions

propositionally equal, and are those notions of equality related to those defined above using homo-

topies. The rules of type theory don’t give answers to these questions, but we can demand without

inviting any contradictions that functions are equal when they are homotopic and types are equal

when they are equivalent, as in the following two axioms:

Axiom 10. (Function Extensionality) For types A,B and f, g : A→ B, (f = g) ' (f ∼ g)

Axiom 11. (Univalence) For types A,B : U , (A =U B) ' (A ' B)

Function extensionality can be interpreted type theoretically as saying that two functions are

the same if they take the same value on each input. The topological interpretation is that the

– 7 –

topology of the function space is such that paths from f to g correspond to homotopies from f to

g. Univalence gives us the notion that equivalent objects are in fact equal. Both axioms convey the

topological idea that in type theory, two constructions can be considered equal if they differ only by

homotopy or equivalence (whereas in topology there are constructions like dimension which are not

homotopy invariant: a 2-d plane is homotopy equivalent to a 1-d line). Proving these axioms to be

consistent with the rules of type theory is far beyond the scope of this paper, but an encouraging

result given in [1] is that Function Extensionality can be derived from Univalence.

We will be primarily concerned with equality of pointed types, which is now easy to define. I

will abuse notation by writing f : A ' B for an equivalence f : A → B (technically an element of

A ' B also includes the inverse function and homotopies witnessing that f is an equivalence).

Proposition 12. For pointed types (A, a), (B, b) : Ũ ,
(

(A, a) =Ũ (B, b)
)
'

∑
f :A'B

f(a) = b

Proving this rigorously involves the idea of ‘transfer’ discussed in [1] regarding equality in

dependent sum types, but given Univalence and our general treatment of pointed types, it seems

unnecessary to go into such detail. However, this characterization will turn out to be rather

unwieldy for loop spaces and pointed function spaces, so we instead use an equivalent definition of

pointed equivalence, which is also equivalent to equality in Ũ :

Definition 13. For pointed types (A, a), (B, b), the type of pointed equivalences is
(

(A, a) '∗

(B, b)
)

:=
∑

f :(A,a)→∗(B,b)

∑
g:(B,b)→∗(A,a)

(f ◦ g ∼ idB)× (g ◦ f ∼ idA)

6. Higher Inductive Types

We have thus far considered very much in the abstract the idea that types correspond to spaces,

without explicitly describing the correspondence for any interesting examples. Higher inductive

types are a means of describing relatively simple types corresponding to simple spaces, by allowing

type constructors not just for the elements of a type, but for its identity types as well. This fits

well into the topological interpretation of types where a type is considered as the entire nested

structure of its identity types, not just as elements with equalities that happen to form another

type. While a general set of rules for higher inductive types have not yet been completely developed,

the uncontroversial simple examples we focus on illustrate the appeal of defining types this way.

Definition 14. We define the circle S1 to be the type ‘freely generated by’ an element base : S1

and an equality loop : base =S1 base

How is a type freely generated by an element and an equality, you might ask? This idea is

a generalization of the concept of ‘inductive types’, which use the same language for types freely

generated by constructors on the level of elements. For instance, the natural numbers N are the

type generated by an element 0 and a function succ : N → N. The type has an element 0, and an

element succ(0), and succ(succ(0)), and so on, with no assumption of relations between them or

additional elements beyond what is required by the rules of type theory (the type could be said to

– 8 –

be ‘free’ of such impositions). For higher inductive types, the ‘rules of type theory’ are taken rather

explicitly to be the rules defining weak ∞-groupoids, including the group-like properties discussed

in section 3 and rules regarding interaction between groupoid structures between levels.

For instance, the groupoid properties assert that there are equalities reflbase, loop
−1 : base =1

S

base, but because we are assuming S1 to be freely generated by base and loop, we cannot assume

that loop = reflbase or loop = loop−1. The laws of type theory require among other things that

loop · loop−1 = reflbase as discussed in section 3, but if freely adding an element to base = base

required that the element be equal to reflbase then all such equalities would be equal, and our type

theory wouldn’t be nearly as interesting.

Intertwined with the notion of S1 being freely generated by base and loop is its recursion

principle, which asserts that for any type C, a function f : S1 → C corresponds precisely to a

choice of an element f(base) : C and an equality f(loop) : f(base) =C f(base). The ‘free’ aspect

of S1 is expressed by the ability to choose any point in C and any loop at that point as the image

of the function.

As the notation suggests, this type is meant to correspond to the circle, with a specified

basepoint. The circle can be defined topologically as a point with a single nondegenerate loop, and

continuous functions from this circle to other spaces likewise correspond to a choice of a point in the

space and a loop at that point. In topology, it is also valuable to consider the higher dimensional

loops (resembling higher dimensional spheres) based at a point in the space, which motivates the

following types.

Definition 15. For n > 1, define the n-sphere type Sn to be freely generated by an element

base : Sn and loopn : refln−1base = refln−1base

Note here that loopn lives in the nth level nested identity type of Sn at base and its successive

deeper refl elements. We can think of constructing this type as a space by starting with the point

base, observing that there must be an equality reflbase corresponding to the constant path at base,

and thus an equality reflreflbase corresponding to the constant 2-d path at base, and so on up to

level n− 1, where we add a non-constant n-dimensional path loopn which can be thought of as an

n-dimensional sphere. For those less comfortable with higher dimensional topology, recall that the

traditional sphere S2 is the set of points unit distance from the origin in Euclidean 3-dimensional

space. The higher dimensional spheres Sn are defined as the points unit distance from the origin

in (n+ 1)-dimensional Euclidean space, here considered up to potential deformations (homotopy).

The recursion principle for Sn is analogous to that of the circle: for any type C a function

f : Sn → C is given by any element f(base) : C and any n-path f(loopn) : refln−1f(base) = refln−1f(base).

While the spheres are valuable type theoretically, as they identify loops in other types by their

recursion principles (discussed more below), they also suggest how to define types corresponding

to any topological space which can be built from paths and spheres. Just freely add whatever

basepoints are needed, as well as the appropriate paths between them, paths between those, and

so on. There are sometimes reasons to use clever tricks for defining spaces using only elements and

paths (as opposed to higher dimensional paths), but this serves as an effective proof of concept for

modeling an important class of topological spaces as types.

– 9 –

7. Equivalence for Loop Spaces

The essence of our main result, stated below, now reduces to a simple argument from merely

unwinding previous definitions and axioms.

Theorem 16.
∏
A:U

∏
a:A

Ωn(A, a) = ((Sn, base)→∗ (A, a))

Proof We will fix an arbitrary pointed type (A, a), so that the proof reduces to constructing

an element of Ωn(A, a) = ((Sn, base) →∗ (A, a)). By our characterization of equality in Ũ , this is

given by pointed function

φ : Ωn(A, a)→∗ ((Sn, base)→∗ (A, a))

a pointed function

ψ : ((Sn, base)→∗ (A, a))→∗ Ωn(A, a)

and witnesses to φ ◦ ψ and ψ ◦ φ being homotopic to the appropriate identity functions.

First we note that the basepoint of ((Sn, base) →∗ (A, a)) is the function sending base to a

and loopn to reflna (this is analogous to the constant function on the sphere in topology), and the

basepoint of Ωn(A, a) is reflna .

Defining φ is simple by the recursion principle for Sn. Ωn(A, a) = (refln−1a = refln−1a , reflna),

so an element ω : Ωn(A, a) along with the basepoint a give a function f : Sn → A with f(base) = a

(so the function is pointed) and f(loopn) = ω. φ then sends ω to f , and is pointed as if ω is reflna ,

f is the constant function by definition.

We define ψ essentially as an evaluation function. A pointed function f from (Sn, base) to (A, a)

has f(base) =A a and f(loopn) : refln−1f(base) = refln−1f(base) ≡ Ωn(A, f(base)). This is encouraging,

but not quite what we want, as Ωn(A, f(base)) is not the same as Ωn(A, a) as a and f(base) are

only propositionally equal. However, this corresponds to ‘change of base’ for higher dimensional

loops in topology, or equivalently a weak∞-groupoid operation caled ‘whiskering’, which allows one

to use the equality f(base) =A a to get an equivalence between Ωn(A, f(base)) and Ωn(A, a). The

details of this construction rely on more intuition from topology or category theory than we wish to

develop here. The key point is that a pointed function from Sn identifies, at least approximately,

an n-dimensional loop at the basepoint a : A, so psi sends the pointed function to that loop in

Ωn(A, a). ψ is trivially pointed as, by the description above, the constant function sending all of

Sn to a identifies the n-loop reflna .

It only remains to show that φ and ψ are inverses up to homotopy, which I will justify informally.

φ ◦ ψ takes a pointed function from Sn to A, identifies in its image an n-loop at a, then takes the

function sending loopn to that n-loop. By the uniqueness aspect of the recursion principle these

functions are equal, so φ ◦ ψ is equal to the identity on pointed functions. ψ ◦ φ takes an n-loop

at a, constructs by the recursion principle a function from Sn sending loopn to that n-loop, then

takes the image of loopn, which is of course the same n-loop at a, so ψ ◦ φ is equal to the identity

on n-loops at a. This completes the proof. ut

Aside from hand waving over a few technical points, this proof offered nothing particularly

new: this equivalence follows essentially from our definitions. In topology this equivalence is slightly

– 10 –

less obvious, , but the points of topological interest are more evident after passing to the connected

components of these spaces, which we now describe.

8. Truncation to Set Structures

As discussed in the introduction, this equivalence of definitions is meant to apply to homotopy

groups, which are meant to be sets. Type theory is often touted as being a supertheory of set

theory in that it can describe sets, which in short goes as follows:

Definition 17. A ‘set’ is a type A such that all equalities between any pair of elements are equal.

As a proposition, isSet(A) :=
∏

a,b:A

∏
p,q:a=b

p = q

This condition can be phrased topologically as the statement that the equality types are

‘contractible spaces’ (this analogy is subtle though and relies on function extensionality) in which

all elements are uniformly equal to each other and the type is equivalent to 1 if nonempty. However,

this notion of a set differs from the classical notion in that there can be explicitly different elements

which are still equal to each other. The classical elements of the set are then more like the ‘connected

components’ of the type, or in other words the equivalence classes of elements under propositional

equality, and the condition for a type to be a set is that each such equivalence class is equivalent

to 1 (so up to equivalence it looks like a set or ‘discrete space’).

Given a type A, we can form a set from it by freely adding equalities of equalities to make

each connected component contractible. The resulting set is then analogous in topology to the set

of connected components of the corresponding space.

Definition 18. For a type A, the ‘set truncation’ ||A||0 of A is the type specified (inductively

generated) by a function A→ ||A||0 and a witness of isSet(||A||0) ≡
∏

a,b:||A||0

∏
p,q:a=b

p = q

Now to show our result for homotopy groups, we have to take the set truncations of both

definitions. But as they have already been proven equal as types, it is reasonable to think that

they will remain equal after this construction.

Lemma 19. For types A and B, if A = B then ||A||0 = ||B||0

Proof Informally, the equality A = B gives an equivalence between A and B, and as functions

respect equality that equivalence extends to one from ||A||0 to ||B||0. ut

We have thus proven the following:

Theorem 20.
∏
A:U

∏
a:A

||Ωn(A, a)||0 = ||((Sn, base)→∗ (A, a))||0

This result is an example of the power of axioms like Function Extensionality in the homotopy

interpretation. In classical homotopy theory, the nth fold loop space and the space of functions

from the n-sphere are (nearly) the same from the definitions, as they are here, but passing to the

– 11 –

homotopy groups in each case is done differently. The nth homotopy group πn(X,x) of a pointed

space (X,x) is defined as the set of connected components of the loop space Ωn(X,x), as we have

done here. But in the alternate definition the group is defined as the set of homotopy classes

of pointed maps from the n-sphere into X, and homotopies need not correspond to paths in the

function space. Thus Function Extensionality gives us a powerful tool in type theory with nontrivial

topological significance.

9. Group Structures

We have now established that two competing definitions of the nth homotopy group of a type

give equivalent sets. However, we have done nothing to suggest that they are isomorphic as groups,

or given any attention to what their group structures are. I will describe informally the group-like

operations on the un-truncated types, which are group operations only up to propositional equality,

precisely the condition for being a group in the set truncated type on the nose (at least in the sense

of the classical set corresponding to the truncated type).

The group-like structure on Ωn(A, a) comes from the concatenation of equalities arising from

transitivity in section 3. Any two loops, as they witness the equality of a or some refln−1a with

itself, can be composed by transitivity, and as we discussed in section 3 this operation forms a

group up to propositional equality.

The group multiplication on the function type Sn →∗ A (with basepoints omitted for brevity)

ought to have type signature (Sn →∗ A) × (Sn →∗ A) → (Sn →∗ A). But the type (Sn →∗
A) × (Sn →∗ A) is equivalent to the type Sn ∨ Sn →∗ A, where Sn ∨ Sn is the type generated by

the element base and two n-loops loop1n and loop2n. It is easy to see that these two types are

equivalent, as a pair of pointed maps from the n-sphere into A both send the basepoint base to the

basepoint of A, and each identify an n-loop at the basepoint in A. A map from Sn ∨ Sn to A also

does just that, sending base to the basepoint of A and loop1n and loop2n each to an n-loop.

To get the multiplication on Sn →∗ A, we first consider the map γ : Sn →∗ Sn ∨ Sn with

γ(base) = base and γ(loopn) = loop1n · loop2n. We now have, for any map f : Sn ∨ Sn →∗ A, the

map f ◦γ : Sn →∗ A. This gives us the desired multiplication (Sn →∗ A)×(Sn →∗ A)→ (Sn →∗ A)

by considering a pair of maps Sn →∗ A as a map Sn ∨ Sn → A and precomposing with γ. For the

rest of the group definition, take the identity to be the constant map Sn →∗ A, and inverses by

precomposing with the map Sn →∗ Sn sending base to base and loopn to loop−1n . That this forms

a group up to propositional equality follows from the ‘cogroup-like-ness’ of Sn in that it satisfies

properties dual to that of a group.

Now to show that these two group structures are the same, let ω1 and ω2 be n-loops in A and f1
and f2 be the corresponding pointed functions from Sn into A. The function f1∨f2 : Sn∨Sn →∗ A
sends loop1n and loop2n to ω1 and ω2 respectively. The composition (f1 ∨ f2) ◦ γ : Sn →∗ A sends

loopn by γ to loop1n · loop2n which is sent by (f1 ∨ f2) to ω1 · ω2 as continuous functions preserve

concatenation of paths. But ω1 · ω2 is the product of ω1 and ω2 in the group structure on Ωn.

Therefore our equivalence preserves the group structure!

– 12 –

10. Conclusion

I have shown, somewhat informally, that a classical nontrivial equivalence of different defini-

tions for the homotopy groups of topological spaces holds as well for the analogous definitions of the

homotopy groups of types. Furthermore, the axioms generally used in homotopy type theory make

this equivalence hold more directly by definition than in topology. Representing a type (or more

general mathematical object) as a function space is a powerful idea in math (coming from category

theory) called representability, and homotopy type theory makes these representations clear in its

definitions of higher inductive types. In addition to introducing an interesting idea from topology

in the language of type theory, I hope that this paper has been a concise but instructive summary

of many key ideas from homotopy type theory.

References

[1] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Math-

ematics. https://homotopytypetheory.org/book Institute for Advanced Study (2013)

