We can easily define a homeomorphism on the 1-skeleton of
these pictures that matches corresponding arcs. This homeomorphism
extends to the 2-skeleta since any homeomorphism between the
boundaries of two discs extends to their interiors. Thus, we have a

homeomorphism
~ ] ~ '] .
Coul oY - coul .

It remains to see that this homeomorphism extend continuously to the
boundary. This, however, follows from the fact that an
“/th-generation” disc is small and close to the boundary: The discs
Cﬁ” are small since their number per annulus at least doubles each
step. The disc Céﬂ in the image is small by construction: It is
within %—distance from its corresponding arc. This arc, in turn has

diameter < 1. q.e.d.
(3

2.5 Consequences

Corollary 2.59. Let S be a simple closed curve in S?. Then S cuts

S? into two discs intersecting in S.

Corollary 2.60. Let S be a simple closed curve in S?. Then any

homeomorphism ¢ : S — S' C S? extends to a homeomorphism S? — S2.

Proof. This is clear since any homeomorphism of the boundaries of
two discs extends to the interiors. The result follows from

applying this to the two discs in S?2-§. q.e.d.

Corollary 2.61 (Schonflies Theorem, second form). Let S be a simple
closed curve in E?. Then every homeomorphism S — S' C E? extends to

a homeomorphism E? — 2.
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3 Manifolds

Definition 3.1. A (topological) m-manifold is a second countable

Hausdorff space M wherein each point has a neighborhood that is
homeomorphic to an open subset of R™.

A chart is a pair (U,¢:U — U) where U and U are
connected open subset of M and R™ respectively and where ¢ is a
homeomorphism. A collection of charts whose domains cover M is
called an atlas.

Let (Up, o :Us — R™) and (Uy, g1 : Uy — R™) be two charts.
Put V:=UyNU;. Then the map

E:00(V) = @1 (V)
z = ¢ (ot (2))

is a homeomorphism called change of coordinates.

3.1 Euler Characteristic

Definition 3.2. An abstract simplicial complex is a set V of

vertices together with a collection & of non-empty finite subsets
called simplices containing all singleton subsets of )V and
satisfying the condition that any non-empty subset of a simplex is

also a simplex. A simplicial map between abstract simplicial

complexes is a map between their vertex sets such that the image of
any simplex is a simplex in the target complex.
The realization of a simplicial complex K = (V,S) is

defined as

K= lo]

geS

where |o| is the convex hull of the vertices in o in RY. Since |K
is defined as a union, we will endow it with the weak topology. If
you do not know what that is, never mind: we will consider finite

simplicial complexes only, and for these, the weak topology
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Table 10: Not everything that has triangles is a triangulation.

coincided with the subspace topology inherited from RY. Note that
every simplicial map induces a continuous map between realizations.

A simplicial complex is the realization of an abstract

simplicial complex sometimes with and sometimes without added

information on what the vertices and simplices are.

Definition 3.3. Let X be a topological space. A triangulation of X
is a simplicial complex that is homeomorphic to X. Sometimes, we

will call the homeomorphism the triangulation.

Example 3.4. Figure (10) shows a triangulation and a

non-triangulation of the torus.

Exercise 3.5. Find a triangulation of the torus that uses as few

triangles as possible.

Definition 3.6. The closed star of a simplex 7 in a simplicial
complex K is the subcomplex of all simplices containing 7. The link
of 7 is the boundary of the star. Equivalently, it is the

subcomplex of all those simplices o such that o N7 = although cUT

is a simplex.

There is an obvious way for a simplicial complex to be a manifold:

All simplex links are spheres of the appropriate dimension. Those
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complexes are called combinatorial manifolds. In dimension 2, this

is the only possibility.

Theorem 3.7. Let K be a triangulated 2-manifold. Then K is a
combinatorial 2-manifold, t.e., the link of each vertexr is a

subdivided circle.

Proof. Every point in K has a neighborhood homeomorphic to an open
disc. Hence, there are no isolated vertices. Moreover, every edge
borders at least one triangle: Otherwise an interior point of that
edge would separate every sufficiently small neighborhood, which is
impossible in a 2-manifold as it does not happen in the plane.
Similarly, the fact that no semicircle can separate the plane
implies that every edge is, in fact, contained in at least two
triangles.

Now we show that each edge is contained in at most two
triangles. So suppose the edge e¢ was in the intersection of at
least three triangles. Then a point in the interior of e has a
circle around it passing through two of these triangles. But that
circle does not separate since you can bypass it along the third
triangle. This contradicts the Jordan curve theorem which should
hold near every point.

It follows that the link of every vertex is a disjoint
union of circles. Since no point in a manifold can separate its

neighborhoods, the link consists of one circle only. q.e.d.

Remark 3.8. In higher dimension, all sorts of bad things happen.
There are manifolds that do not admit a combinatorial triangulation
although they have a triangulation. In particular, that some links
in a simplicial complex are not spheres does not imply that the
complex is not a manifold. It is really hard to think how a vertex

with a non-sphere link can have a neighborhood that is an open disc.

Definition 3.9. Let K be an abstract simplicial complex. A

subdivision of K is an abstract simplicial complex L such that
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1. The vertices of L are points in |K|.

2. Every simplex of L is contained in the realization of a simplex
of K.

3. The induced linear map |L| — |K| is a homeomorphism.

Two simplicial complexes are called combinatorially equivalent if

they have isomorphic subdivisions.

Example 3.10. Any two subdivisions of a given simplicial complex K
are combinatorially equivalent. In fact, they have a common

refinement.

Proof. Since all simplices of the subdivisions are contained in
simplices of K and look straight therein, their intersections, if
non-empty, are convex. From here, a common finer subdivision is

easily found. q.e.d.

Fact 3.11. Every compact 2-manifold X has a triangulation and any

two triangulations of X are combinatorially equivalent.

Remark 3.12. In higher dimensions, it is not true that all manifolds
have triangulations, and there are manifolds that admit
combinatorially inequivalent triangulations. Even when we restrict
ourselves to combinatorial triangulations to begin with, there are

inequivalent ones. !'!! give a reference !!!

Corollary 3.13. Any invariant of 2-manifolds defined in terms of
combinatorial equivalence classes of triangulations s, in fact, a

topological invariant of the manifold.

Example 3.14. The Euler characteristic of a simplicial complex is

the alternating sum of the numbers of simplices in different

dimensions, i.e.,

X (K) =Y (~1)" [{o € K| dim (o) = m}].

m>0
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Table 11: The deletion proof

If L is a subdivision of K, then x (L) = x(K). Hence, the Euler

characteristic of a surface is a topological invariant.

Proof. In dimension 2 the “deletion proof” works: Inside the
triangles, delete edges one by one decreasing the number of regions
and edges by one. If there is only one region left, delete interior
vertices along with their edges (push in free faces!). Finally,
delete vertices in the l-skeleton. See figure (11)

Warning: This proof does not work in higher dimensions.
Removing the 1-dimensional material is possible only because we can
find terminal vertices. In dimension 3, we would be left with the
task of removing 2-complexes. However, we might run into something
like Bing’s house (see figure 12) where we do not find any “free

faces” to push in. q.e.d.

Exercise 3.15. Give a proof for the invariance of the
Euler-characteristic with respect to subdivisions that works in all

dimensions.

Remark 3.16. Since the Euler characteristic can also be computed
from the rank of singular homology groups, it turns out, that the
Euler characteristic is a topological invariant for all triangulable

spaces, i.e., any two triangulations of the same space have the same
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Table 12: Bing’s house

Euler characteristic, even if they are not combinatorially

equivalent.

3.2 Triangulability of Surfaces
Theorem 3.17 (Rado 1925). Every 2-mantfold X has a triangulation.

We present Rado’s original proof since it is efficient and not

technical.

Proof of theorem 3.17. We need a little bit of terminology. Call
an embedded closed disc J in Y a notionJordan domain if it is
contained in a chart. Since the topology of X has a countable
basis, X is covered by countably many charts. Each chart, in turn,
allows for a countable set of Jordan domains whose interiors cover
the chart. Thus, we find a sequence Ji,J;,... of Jordan whose
interiors cover X.

Claim A. There is a sequence J7,Jj,... of Jordan domains whose

interiors cover ¥ such that 9 (J;)Nd(J;) is finite for i#j.
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ProOF. Put J{ :=J;. Now suppose that Jj,J;,...,J  have already been

constructed such that:

1.The regions J; “thicken” the original domains J;, i.e., we
have J; C J for +=1,2,...,r.

2.The set of intersectiomns

M= ] a()no()

1<j<r
is finite.

Our task will be to find the next term J , such that the above

two conditions are preserved.

Some more local definition will ease the argument. We call the
points in M crossings, and a path in ¥ is admissible if

it intersects the set

i<r
in only finitely many points. Given an open set U C X, call
two points U-equivalent if they can be connected by an
admissible path in U. Note that U-equivalence is an

equivalence relation.

Let P be a point outside M,. Any neighborhood U of P contains
a sub-neighborhood V such that any two point in V are
U-equivalent. 1Indeed, if P does not lie in B, we can choose V
so that it is connected and does not intersect B. In this

case, any two points in V are even V-equivalent. If P& B — M,
then we chose V to intersect only one of the boundary curves
0(Jf). The Schonflies Theorem implies that we can pretend this
curve is the unit circle in the plain. In this picture,

however, the claim is obvious.

It follows that for any open set U that does not contain any

crossings, the U-equivalence classes are open. Thus, they
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coincide with the components of U. In particular, if U is
connected, any two points in U can be connected by an

admissible path.

Now, we can proceed to construct .J7,,. Consider a chart that
contains J,;;. By the Schonflies Theorem we can assume that J,i;
is represented as the closed unit disc in this chart. Let R be
an open annulus around J,;; that does not contain any crossings.
Thus, R intersects B in a union of disjoint arcs. The set
R — B is non-empty and open. Thus there are two points P,QQ € R
such that:

*

1.The two radii from the center of J! , through P and @ do
not intersect and hence separate the annulus into two

topological rectangles R, and R;.

2.Both points have open neighborhoods in R — B. Thus, we can
find points Py, P, close to P and points (y,Q; close to @
such that the segments PP, and (J(); are contained in the

rectangle R; and do not intersect B.

Since the rectangles are connected and do not contain any
crossings, we know that P, and (); can be connected inside R; by

a path p; that intersects B only finitely many times.

Now we concatenate: the path

(QPO) Do (POP) (Ppl)pl (QlQ)

is a closed loop inside R surrounding .J.;;. Deleting pieces if
necessary to avoid self-intersection, we find a simple closed
curve inside R that intersects B only finitely many times and

whose interior contains .J,;;. This is our choice for J; . a
Now, we define a sequence
PO PO o pEd pM o pE
of closed discs that cover X such that the following hold:
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11t finish this !!!

Table 13: The construction of J;

1. For any r, we have LL<TJ?::LL<TLEQII§”.

2. The interiors of the fﬁﬁ are pairwise disjoint.

3. Each point is contained in only finitely many Fﬁﬁ. Note that

by compactness of closed discs, this condition implies that any

of these discs meets only finitely many other discs of the

sequence.

Thus, we can think of these ffﬁ as a polygonal decomposition of X
which is easily turned into an honest triangulation.

Hence, we are reduced to proving the existence of the
sequence fﬁ”,fél%...,fésﬁ,fén,...,fég),... put P := Jr. Suppose

already have constructed

pO PN pE) pW P PO
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The Jordan domain J;,; is chopped up into regions by the boundary
curves O (J;) for ¢ <r. Some of these regions might not be discs but
contain finitely many holes. We further subdivide and arrive at a
decomposition of J, , into finitely many discs. Among these we chose
as fﬁfh...,fﬁiﬁﬂ precisely those that do not contain any interior
point of ., J;.

DE the three requirements our sequence is supposed to
meet, only (3) requires proof. So let P be a point in Y. There is
a Jordan domain J; containing P as an interior point. Let U be a
neighborhood of P in J;. A disc P;(j) can intersect U only if i<k.

This establishes (3) and completes the proof. q.e.d.

3.3 Geometric Structures

Definition 3.18. A differentiable structure on a manifold is an

atlas maximal with respect to the restriction that all coordinate
changes are differentiable maps.

A complex structure on a manifold is an atlas maximal with

respect to the restriction that all coordinate changes are
holomorphic maps. A map ¢:R?*— R? is holomorphic if it is

differentiable its derivative is a matrix of the form

(50)

A Fuclidean structure on a manifold is an atlas maximal

with respect to the restriction that all coordinate changes are
Euclidean isometries.
Given a fixed homeomorphic identification of R™ with

hyperbolic m-space, we can define a hyperbolic structure on a

manifold as an atlas maximal with respect to the restriction that

all coordinate changes are hyperbolic isometries.

Example 3.19. There is no Euclidean structure on the sphere SZ.
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