Chapter 4

Higher Genus Surfaces

4.1 The Main Result

We will outline two proofs of the main theorem:

Theorem 4.1.1. Let Σ be a closed oriented surface of genus g > 1. Then every homotopy class of homeomorphisms has a representative $\zeta: \Sigma \to \Sigma$ satisfying one of the following conditions:

elliptic case: The homeomorphism has finite order, i.e., $\zeta^k = id_{\Sigma}$.

- hyperbolic case: The homeomorphism leaves a pair of geodesic laminations on Σ invaraint.
- **parabolic case:** There is a non-empty collection of simple closed cuves on Σ that is left invariant as a subset of Σ . In this case, a power of ζ fixes the curves point wise.

Definition 4.1.2. For a closed oriented surface of genus g>1, Teichmüller space is defined as

$$\mathcal{T}_{\Sigma} = ig\{ extsf{hyperbolic structures on } \Sigma ig\} ig/ extsf{Homeo}_1(\Sigma)$$
 .

The main problem to overcome in both proofs is that the action of $M(\Sigma)$ on \mathcal{T}_{Σ} is not cocompact. There are two main strategies to overcome this obstacle:

- Restrict your attention to a cocompact subspace of $\mathcal{T}_\Sigma.$
- Compactify \mathcal{T}_{Σ} so that the action of $M(\Sigma)$ extends to the compactification.

4.1.1 First Proof: Cutting off Infinity

Promise 4.1.3 There is a metric on Teichmüller space \mathcal{T}_{Σ} such that:

- 1. \mathcal{T}_{Σ} is a geodesic metric space.
- 2. Geodesics are unique.
- 3. Local geodesics are global.
- 4. The action of $M(\Sigma)$ on \mathcal{T}_{Σ} is by isometries.

Thus, \mathcal{T}_{Σ} is a proper metric space and uniquely geodesic.

Definition 4.1.4. Let X be a metric space and $\lambda: X \to X$ be an isometry. The displacement function of λ is

$$D_{\lambda}: X \to \mathbb{R}$$
$$x \mapsto d_X(x, \lambda(x)).$$

The displacement of λ is

$$D(\lambda) := \inf_{x \in X} D_{\lambda}(x) .$$

The displacement is <u>realized</u> if there is a point $x \in X$ such that

$$D(\lambda) = D_{\lambda}(x) \,.$$

Fix a homeomorphism

$$\zeta: \Sigma \to \Sigma,$$

which induces an isometry λ_ζ on Teichmüller space by

$$\lambda_{\zeta} : [\mathcal{H}] \mapsto [\mathcal{H}\zeta]$$

There are three cases:

- The displacement is realized and equals 0.
- The displacement is realized and strictly positive.
- The displacement is not realized.

The Displacement is Realized and Equals 0

Let \mathcal{H} be a hyperbolic structure on Σ such that $[\mathcal{H}] \in \mathcal{T}_{\Sigma}$ realizes the displacement 0. Note that this point is a fixed point of ζ :

$$[\mathcal{H}] = [\mathcal{H}\zeta]$$

Thus there is a homeomorphism $\xi:\Sigma\to\Sigma$ homotopic to the identity such that

$$\mathcal{H}\xi = \mathcal{H}\zeta.$$

Therefore, $\zeta \circ \xi^{-1}$ is an isometry of (Σ, \mathcal{H}) . Since ξ is homotopic to the identity, we conclude that ζ is homotopic to an isometry of (Σ, \mathcal{H}) . This isometry has finite order:

Promise 4.1.5 Any isometry of an oriented closed hyperbolic surface has finite order.

The Displacement is realized and Strictly Positive

Our first goal is to construct a geodesic that is fixed by λ_{ζ} :

Lemma 4.1.6. Let X be a geodesic metric space and $\lambda: X \to X$ be an isometry whose displacement is strictly positive and realized at a point $x \in X$. Then

$$l := \bigcup_{k \in \mathbb{Z}} \left[X, \lambda^k(x) \right] \lambda^{k+1}(x) = \bigcup_{k \in \mathbb{Z}} \lambda^k \left[X, x \right] \lambda(x)$$

is locally a geodesic.

Proof. We know that l is geodesic at all points in the interior of $[x, \lambda(x)]$. Since λ preserves being locally geodesic, it suffices to show that l is geodesic at $\lambda(x)$.

Consider the midpoint y of $[x, \lambda(x)]$. Observe that

$$D(\lambda) \le d(y,\lambda(y)) \le d(y,\lambda(x)) + d(\lambda(x),\lambda(y)) \le d(x,\lambda(x)) = D(\lambda).$$

Thus *l* is geodesic at $\lambda(x)$.

This construction applies to Teichmüller space and yields are global bi-infinite geodesic C by (??.3). Note that this geodesic is invariant with respect to λ_{ζ} .

This is the hyperbolic case:

Promise 4.1.7 Every geodesic in Teichmüller space T_{Σ} gives rise to a pair of transverse geodesic laminations.

The Displacement is Not Realized

Definition 4.1.8. A metric space is <u>proper</u> if closed balls are compact.

Exercise 4.1.9. Show that a metric space is proper if an only if:

$$compact \iff closed$$
 and bounded

Exercise 4.1.10. Show that a geodesic metric space is proper if it is complete and locally compact.

Definition 4.1.11. A group G acts properly discontinuously on a topological space X if for every compact subset $C \subseteq X$, the set

$$\{g \in G \mid gC \cap C \neq \emptyset\}$$

is finite.

Remark 4.1.12. A properly discontinuous action is a topological analogue of an action with finite stabilizers.

We already know that the mapping class group does not act freely on Teichmüller space.

q.e.d.

Promise 4.1.13 Teichmüller space is a complete, locally compact, proper metric space, and the action of the mapping class group acts properly discontinuously on Teichmüller space.

We need a big theorem. For any $\varepsilon > 0$ let $\mathcal{T}_{\varepsilon}$ be the subset of \mathcal{T}_{Σ} of those hyperbolic structures for which the length of all closed geodesics in Σ are bounded from below by ε . Note that $\mathcal{T}_{\varepsilon}$ is $M(\Sigma)$ -invariant.

Promise 4.1.14 (Mumford's Compactness Theorem) For each $\varepsilon > 0$, there is a compact subset $C_{\varepsilon} \subset \mathcal{T}_{\Sigma}$ such that

$$\mathcal{T}_{\varepsilon} = C_{\varepsilon} M(\Sigma)$$
.

In fact, C_{ε} can be taken to be a <u>fundamental domain</u> for the action.

Let us choose a sequence of hyperbolic structures (\mathcal{H}_i) such that

$$d([\mathcal{H}_i], [\mathcal{H}_i\zeta]) \to D\lambda_{\zeta}$$
 as $i \to \infty$.

Lemma 4.1.15. There is no $\varepsilon > 0$ such that $[\mathcal{H}_i] \in \mathcal{T}_{\varepsilon}$ for all i.

Proof. We argue by contradiction. So suppose $[\mathcal{H}_i] \in \mathcal{T}_{\varepsilon}$ for all i. Then we can find a sequence $\xi_i \in M(\Sigma)$ such that

 $[\mathcal{H}_i\xi_i]\in C_{\varepsilon}.$

Note that the sequence

$$d([\mathcal{H}_i], [\mathcal{H}_i\zeta]) = d([\mathcal{H}_i\xi_i], [\mathcal{H}_i\zeta\xi_i])$$

is bounded. Thus the points

$$\left[\mathcal{H}_i\zeta\xi_i\right] = \left[\mathcal{H}_i\xi_i\circ\xi_i^{-1}\circ\zeta\circ\xi_i\right]$$

stays within bounded distance from the compact set C_{ε} . Thus we can pass to a subsequence such that simultaneously

$$[\mathcal{H}_i\xi_i] \to \mathcal{H}_+$$

and

$$\left[\mathcal{H}_i\xi_i\circ\xi_i^{-1}\circ\zeta\circ\xi_i\right]\to\mathcal{H}_*$$

Observe that the isometries $\xi_i^{-1} \circ \zeta \circ \xi_i$ take points close to \mathcal{H}_+ to points close to \mathcal{H}_* . Since the mapping class group acts properly discontinuously on Teichmüller space, it follows that there are only finitely many elements in $M(\Sigma)$ that do this. By the box principle, one of these occurs infinitely many times in the sequence $\xi_i^{-1} \circ \zeta \circ \xi_i$. Let this isometry be $\xi^{-1} \circ \zeta \circ \xi$. Since

$$d([\mathcal{H}_*], [\mathcal{H}_*]) = D(\zeta)$$

it follows that the displacement of ζ is realized at

$$\left[\mathcal{H}_+\xi^{-1}
ight].$$

q.e.d.

Definition 4.1.16. The <u>spectrum</u> of a hyperbolic structure \mathcal{H} on Σ is the set

 $\Sigma(\mathcal{H}) := \{ \ln(\gamma) \mid \gamma \text{ is a simple closed geodesic in } \Sigma \}.$

Promise 4.1.17 For any hyperbolic surface, closed geodesics of length less than $3 + \sqrt{2}$ do not intersect.

Promise 4.1.18 Any collection of pairwise non intersecting non-homotopic loops on a surface of genus g has at most 3g-3 elements.

Corollary 4.1.19. For any hyperbolic structure \mathcal{H} ,

$$\left|\Sigma(\mathcal{H}) \cap \left(-\infty, \ln\left(3+\sqrt{2}\right)\right]\right| \le 3g-3.$$
 q.e.d.

Promise 4.1.20 Let γ be a simple closed curve on Σ that is not homotopically trivial. For each hyperbolic structure \mathcal{H} , there is a unique geodesic $\gamma_{\mathcal{H}}$ homotopic to γ . Moreover, the map

 $\ell_{\gamma}: [\mathcal{H}] \mapsto \ln(\textit{lenght of } \gamma_{\mathcal{H}})$

is well defined and satisfies the inequality

$$|\ell_{\gamma}([\mathcal{H}_1]) - \ell_{\gamma}([\mathcal{H}_2])| \le d_{\mathcal{T}_{\Sigma}}([\mathcal{H}_1], [\mathcal{H}_2])$$

Choose L greater than all $D_{\lambda_{\zeta}}([\mathcal{H}_i])$. Since no $\mathcal{T}_{\varepsilon}$ contains all $[\mathcal{H}_i]$, it follows that there is an index i for which

$$\Sigma(\mathcal{H}_i) = M \uplus N$$

with

- $M \neq \emptyset$.
- $\sup M < \ln(3 + \sqrt{2})$.
- $\sup M + L < \inf N$.

We claim that the curves from which the lengths in M arise form an invariant system. Let Δ denote the set of homotopy classes of those closed geodesics.

Observe that

$$\Sigma(\mathcal{H}) = \Sigma(\mathcal{H}\zeta) = M \uplus N.$$

Thus, we may ask whether ζ respects the decomposition into M and N. The answer is "yes" because of (4.1.20): The curves γ in Δ are those with logarithmic length relative to \mathcal{H}_i in M:

 $\ell_{\gamma}\mathcal{H}_i \in M.$

Since

$$|\ell_{\gamma}\mathcal{H}_{i} - \ell_{\gamma}\mathcal{H}_{i}\zeta| \leq d(\mathcal{H}_{i}, \mathcal{H}_{i}\zeta) \leq L,$$

it follows from $\sup M + L < \inf N$ that

$$\ell_{\gamma}\mathcal{H}_i\zeta = \ell_{\zeta\circ\gamma}\mathcal{H} \in M.$$

Thus, ζ permutes the homotopy classes in Δ . A final fact proves the ζ is reducible:

Promise 4.1.21 If a homeomorphism ζ permutes a finte set Δ of non-parallel, pairwise disjoint simple closed curves then these homotopy classes can simultaneously realized by simple closed curves which are permuted by a homeomorphism homotopic to ζ .

4.1.2 Second Proof: Compactifying Teichmüller Space