
Chapter 4

Higher Genus Surfaces

4.1 The Main Result

We will outline two proofs of the main theorem:

Theorem 4.1.1. Let Σ be a closed oriented surface of genus g > 1.

Then every homotopy class of homeomorphisms has a representative

ζ : Σ → Σ satisfying one of the following conditions:

elliptic case: The homeomorphism has finite order, i.e., ζk = idΣ.

hyperbolic case: The homeomorphism leaves a pair of geodesic

laminations on Σ invaraint.

parabolic case: There is a non-empty collection of simple closed

cuves on Σ that is left invariant as a subset of Σ. In this

case, a power of ζ fixes the curves point wise.

Definition 4.1.2. For a closed oriented surface of genus g > 1,

Teichm�uller space is defined as

TΣ = {hyperbolic structures on Σ}/
Homeo1(Σ) .

The main problem to overcome in both proofs is that the action of

M(Σ) on TΣ is not cocompact. There are two main strategies to

overcome this obstacle:
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• Restrict your attention to a cocompact subspace of TΣ.

• Compactify TΣ so that the action of M(Σ) extends to the

compactification.

4.1.1 First Proof: Cutting off Infinity

Promise 4.1.3 There is a metric on Teichm�uller space TΣ such that:

1. TΣ is a geodesic metric space.

2. Geodesics are unique.

3. Local geodesics are global.

4. The action of M(Σ) on TΣ is by isometries.

Thus, TΣ is a proper metric space and uniquely geodesic.

Definition 4.1.4. Let X be a metric space and λ : X → X be an

isometry. The displacement function of λ is

Dλ : X → R

x 7→ dX(x, λ(x)) .

The displacement of λ is

D(λ) := inf
x∈X

Dλ(x) .

The displacement is realized if there is a point x ∈ X such that

D(λ) = Dλ(x) .

Fix a homeomorphism

ζ : Σ → Σ,

which induces an isometry λζ on Teichm�uller space by

λζ : [H] 7→ [Hζ] .

There are three cases:
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• The displacement is realized and equals 0.

• The displacement is realized and strictly positive.

• The displacement is not realized.

The Displacement is Realized and Equals 0

Let H be a hyperbolic structure on Σ such that [H] ∈ TΣ realizes the

displacement 0. Note that this point is a fixed point of ζ:

[H] = [Hζ] .

Thus there is a homeomorphism ξ : Σ → Σ homotopic to the identity

such that

Hξ = Hζ.

Therefore, ζ ◦ ξ−1 is an isometry of (Σ,H). Since ξ is homotopic to

the identity, we conclude that ζ is homotopic to an isometry of

(Σ,H). This isometry has finite order:

Promise 4.1.5 Any isometry of an oriented closed hyperbolic surface

has finite order.

The Displacement is realized and Strictly Positive

Our first goal is to construct a geodesic that is fixed by λζ:

Lemma 4.1.6. Let X be a geodesic metric space and λ : X → X be an

isometry whose displacement is strictly positive and realized at a

point x ∈ X. Then

l :=
⋃

k∈Z

[
X,λk(x)

]
λk+1(x) =

⋃

k∈Z
λk [X, x] λ(x)

is locally a geodesic.

Proof. We know that l is geodesic at all points in the interior of

[x, λ(x)]. Since λ preserves being locally geodesic, it suffices to

show that l is geodesic at λ(x).
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Consider the midpoint y of [x, λ(x)]. Observe that

D(λ) ≤ d(y, λ(y)) ≤ d(y, λ(x)) + d(λ(x) , λ(y)) ≤ d(x, λ(x)) = D(λ) .

Thus l is geodesic at λ(x). q.e.d.

This construction applies to Teichm�uller space and yields are global

bi-infinite geodesic C by (??.3). Note that this geodesic is

invariant with respect to λζ.

This is the hyperbolic case:

Promise 4.1.7 Every geodesic in Teichm�uller space TΣ gives rise to a

pair of transverse geodesic laminations.

The Displacement is Not Realized

Definition 4.1.8. A metric space is proper if closed balls are

compact.

Exercise 4.1.9. Show that a metric space is proper if an only if:

compact ⇐⇒ closed and bounded

Exercise 4.1.10. Show that a geodesic metric space is proper if it

is complete and locally compact.

Definition 4.1.11. A group G acts properly discontinuously on a

topological space X if for every compact subset C ⊆ X, the set

{g ∈ G gC ∩ C 6= ∅}

is finite.

Remark 4.1.12. A properly discontinuous action is a topological

analogue of an action with finite stabilizers.

We already know that the mapping class group does not act freely on

Teichm�uller space.
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Promise 4.1.13 Teichm�uller space is a complete, locally compact,

proper metric space, and the action of the mapping class group acts

properly discontinuously on Teichm�uller space.

We need a big theorem. For any ε > 0 let Tε be the subset

of TΣ of those hyperbolic structures for which the length of all

closed geodesics in Σ are bounded from below by ε. Note that Tε is

M(Σ)-invariant.

Promise 4.1.14 (Mumford's Compactness Theorem) For each ε > 0, there

is a compact subset Cε ⊂ TΣ such that

Tε = CεM(Σ) .

In fact, Cε can be taken to be a fundamental domain for the action.

Let us choose a sequence of hyperbolic structures (Hi) such

that

d([Hi] , [Hiζ]) → Dλζ as i →∞.

Lemma 4.1.15. There is no ε > 0 such that [Hi] ∈ Tε for all i.

Proof. We argue by contradiction. So suppose [Hi] ∈ Tε for all i.

Then we can find a sequence ξi ∈ M(Σ) such that

[Hiξi] ∈ Cε.

Note that the sequence

d([Hi] , [Hiζ]) = d([Hiξi] , [Hiζξi])

is bounded. Thus the points

[Hiζξi] =
[Hiξi ◦ ξ−1

i ◦ ζ ◦ ξi

]

stays within bounded distance from the compact set Cε. Thus we can

pass to a subsequence such that simultaneously

[Hiξi] → H+

81



and [Hiξi ◦ ξ−1
i ◦ ζ ◦ ξi

] → H∗.

Observe that the isometries ξ−1
i ◦ ζ ◦ ξi take points close to

H+ to points close to H∗. Since the mapping class group acts

properly discontinuously on Teichm�uller space, it follows that there

are only finitely many elements in M(Σ) that do this. By the box

principle, one of these occurs infinitely many times in the sequence

ξ−1
i ◦ ζ ◦ ξi. Let this isometry be ξ−1 ◦ ζ ◦ ξ. Since

d([H∗] , [H∗]) = D(ζ)

it follows that the displacement of ζ is realized at
[H+ξ−1

]
.

q.e.d.

Definition 4.1.16. The spectrum of a hyperbolic structure H on Σ is

the set

Σ(H) := {ln(γ) γ is a simple closed geodesic in Σ} .

Promise 4.1.17 For any hyperbolic surface, closed geodesics of

length less than 3 +
√

2 do not intersect.

Promise 4.1.18 Any collection of pairwise non intersecting

non-homotopic loops on a surface of genus g has at most 3g − 3

elements.

Corollary 4.1.19. For any hyperbolic structure H,
∣∣∣Σ(H) ∩

(
−∞, ln

(
3 +

√
2
)]∣∣∣ ≤ 3g − 3. q.e.d.

Promise 4.1.20 Let γ be a simple closed curve on Σ that is not

homotopically trivial. For each hyperbolic structure H, there is a

unique geodesic γH homotopic to γ. Moreover, the map

`γ : [H] 7→ ln(lenght of γH)

is well defined and satisfies the inequality

|`γ([H1])− `γ([H2])| ≤ dTΣ
([H1] , [H2]) .
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Choose L greater than all Dλζ
([Hi]) . Since no Tε contains

all [Hi], it follows that there is an index i for which

Σ(Hi) = M ]N

with

• M 6= ∅.

• sup M < ln
(
3 +

√
2
)
.

• sup M + L < inf N.

We claim that the curves from which the lengths in M arise form an

invariant system. Let ∆ denote the set of homotopy classes of those

closed geodesics.

Observe that

Σ(H) = Σ(Hζ) = M ]N.

Thus, we may ask whether ζ respects the decomposition into M and N.

The answer is \yes" because of (4.1.20): The curves γ in ∆ are

those with logarithmic length relative to Hi in M:

`γHi ∈ M.

Since

|`γHi − `γHiζ| ≤ d(Hi,Hiζ) ≤ L,

it follows from sup M + L < inf N that

`γHiζ = `ζ◦γH ∈ M.

Thus, ζ permutes the homotopy classes in ∆. A final fact proves the

ζ is reducible:

Promise 4.1.21 If a homeomorphism ζ permutes a finte set ∆ of

non-parallel, pairwise disjoint simple closed curves then these

homotopy classes can simultaneously realized by simple closed curves

which are permuted by a homeomorphism homotopic to ζ.

4.1.2 Second Proof: Compactifying Teichm�uller Space
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