C Finiteness Properties

Definition C.1. A group G is of type F,, if it has an
Eilenberg-MacLane complex K(G,1) with finite skeleta in dimensions

<m.

Remark C.2. We do not simply require the m-skeleton to be finite so
that the definition makes sense for m = oo in which case we require
the Eilenberg-MacLane complex to have finitely many cells in each

dimension.

Example C.3. Free groups are of type F.. So is Thompson’s group F'.

Grigorchuk’s group is finitely generated but finitely presented.

Observation C.4. Prove that G is of type F,, if and only if there is
an (m — 1)-connected simplicial complex X with a free and cocompact

G-action.

Corollary C.5. Prove that every group ts of type Fy, a group is
finttely generated <f and only if it is of type Fi, and it is
finttely presented <f and only if it is of type F,. q.e.d.

Exercise C.6. Let G be of type F,, and let X be a (m — 2)-connected
simplicial complex of dimension m — 1 with a free, cocompact
G-action. Show that X embeds G-equivariantly into a
(m — 1)-connected simplicial complex of dimension m with a free,
cocompact G-action.

Infer that a group is of type F, if and only if it is of
type F,, for all m < oo.

Exercise C.7. Let N — (G —+ () be a short exact sequence of groups
where N is of type F,,_; and G is of type F,,. Then @} is of type
Fo..

Exercise C.8. Show that all finite groups are of type F.
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C.1 Brown’s Criterion

The big lemma about finiteness properties is due to K.S. Brown
[Bro87a]

Theorem C.9. Let G be a group and D a directed set. Let (X,),.p be
a directed system of G-CW-complexes upon which G acts cocompactly
by cell-permuting homeomorphism. Assume that thelygaED;Ya %8

(m —1)-connected and that, for each o € D and each cell p in the
m-skeleton of X,, the stabilizer Stab(p) is of type Fr_gimp). Then

the following are equivalent:
1. G 1is of type Fy,.

2. For each 1 <m, the directed system of homotopy groups

(7 (Xa))pep %5 essentially trivial.

Here a directed system of group (fLQaeD 15 called essentially
trivial if for each a € D there is an element > « such that the

homomorphism H, — Hg is trivial.

Corollary C.10. Suppose G act cocompactly by cell permuting
homeomorphisms on an (m — 1)-connected CW-complez X such that for
every cell p, the stabilizer Stab(p) is of type Fpdimp). Then G s
of type Fp,.

Proof. Consider the directed system

X idX}X idx} X idx}

and check that it satisfies the hypotheses of Brown’s

Criterion. q.e.d.

C.2 Applications of Brown’s Criterion

Example C.11. Let G be a group and let D:={K CG|K is finite } be
the set of finite subsets of G directed by inclusion. For K € D,

define the simplicial complex
Xk :={o|o CgK for some g€ G}.
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Obviously, G acts cocompactly on Xg. Simplex stabilizers conjugate
into K and are, therefore, finite. Thus G is of type F,, if and
only if (m;(Xa)),ep is essentially trivial for all ¢ < m.

Let H be a subgroup of finite index in (. Then the
induced action of H on Xk is still cocompact. Thus we can use the
same directed system to detect finiteness properties of H. Thus, we

have

Corollary C.12. Let H be a subgroup of finite indexr in G. Then H
1s of type F,, if and only if G is of type F,,.

With only little more effort, the same construction yields:

Exercise C.13. Let (G be of type F,, and let H be a retract of G.
Then H is of type F,,.

Proposition C.14. Let N — G — () be a short ezact sequence of
groups where N and Q are of type F,,. Then G is of type F,,.

Proof. Take any free () complex that proves () to be of type F,,.
Consider this complex as a (G-complex where the G-action is given
via the projection G — (). Then, all cell stabilizers equal N and
are of type F,,. Thus the same complex proves that G is of type

Fo. q.e.d.

Definition C.15. Let X and Y be two metric spaces. A map f:X =Y
is called a lipschitz if there are constants L and K such that

d(z,y) < Ld(f (z),f(y) + K

for all z,y € X.
A lipschitz f: X =Y is a quasi-retraction if there

exists a lipschitz hA:Y — X and a constant C such that

d(f(h(y),y) <C
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for all y€ Y. The map h is called a quasi-section for f. If there

is a quasi-retraction f: X — Y, the space Y is called a

quasi-retract of X.

The map f is a quasi-isometry if there is a map h:Y — X

such that f is a quasi-retraction with quasi-section h and h is a
quasi-retraction with section f.

Two finitely generated groups are called quasi-isometric

if they have quasi-isometric Cayley graphs for some finite
generating sets. The notion of a quasi-retract carries over to

group in the same way.

Observation C.16. Since compositions of lipschitz maps are
lipschitz, quasi-isomelry is an equivalence relation on the class of

metric spaces.

Exercise C.17. Show that X and Y are quasi-isometric if and only if
there is a map f: X — Y and constants L, K, and C' such that the
following hold:

1. f is bilipschitz, i.e., W@IW) g < g(z,4) < Ld(f (2),f () + K

for all z,y € X.
2. f is quasi-surjective, i.e., Y =J,.xBc(z).

Exercise C.18. Let X and = be two finite generating sets for (.

Prove that I's (G) and 'z (G) are quasi-isometric.

Proposition C.19 ([Alon94]1). Let G be of type F,,. If H is a
quasi-retract of G, then H is of type F,,.

Proof. Our directed set will be IN. For n € IN, define

X, = {0 CG|diam (o) <n}
Y, = {0 CH]|diam (o) <n}

The group G acts on X, cocompactly and with finite stabilizers.

The same holds for H and Y,. Moreover, both directed systems
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converge to big simplices. Thus, we can use these directed systems
to determine the finiteness properties of these groups.
Let f:G — H be a retraction with quasi-section h: H =+ G

with constants L, K and C as in the definition. Then, we form
h /
Y, > Xu —-Xy =Y,

where M > L(m+ K) and N is chosen so that the middle map
annihilate homotopy in dimensions < m. The number n, again, is
derived from the lipschitz constants. Now the composite map is
induced by foh which is homotopic to the inclusion map into Y, for
any n' > n+2C. Here, we use that fact that two simplicial maps f
and h are homotopic if, for each simplex o, the union f(U)LJhO is a
simplex.

Hence the inclusion Y, C Y, annihilates homotopy groups in

dimensions < m. This implies that H is of type F,,. q.e.d.

Corollary C.20. Finiteness properties are geometric, %.e., they

depend only on the quasi-isometry type of a group.

C.3 The Stallings-Bieri Series

Finiteness properties are not yet well understood. We have,
however, some series of groups for which finiteness properties have
been established. In this section, we shall discuss the most
accessible example of such a series, which is due to J.R. Stallings
and R. Bieri.

Consider the exact homomorphism
Flavy) * Flasgoy ¥ % Flan gy = Z
that sends all generators z;, ¥; to 1 and let
Gn

be the kernel.
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Proposition C.21. The group G, is of type F,_; but not of type F,.

Proof. The free group [y, ,) acts freely and cocompactly on a regular

tree 1; all of whose vertices have degree 4. The homomorphism

F{-'Ei:?/i} — Z

Ti, ¥y — 1

induces an action of Fy; ,}; on R by translations. With respect to

this action, we have a height function

that is Fy;4)-equivariant. Note that at each vertex of T; we have
two ascending edges (labeled by the generators) and two descending
edges (labeled by their inverses).

Put

X:=XT

7

and consider the height

h: X — R
(t:) = Zhi ()

The ascending and descending links of vertices in X are spheres of
dimension n—1. 1In fact, they arise as joins of ascending,
respectively descending, links in the factors 7;. It follows by the

Morse lemma (B.3) that slices
Xy :=h7H ([—t,1])

are (n —2)-connected: As ¢ increases, we cone off (n — 2)-connected
subcomplexes, thereby not changing homotopy groups in dimensions
<n—2. However, in the limit, we obtain the contractible space X.

Thus, the homotopy groups in dimensions <n — 2 were trivial all

along.
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We use X; as a directed system of CW-complexes to apply
Brown’s Criterion. It is obvious that G, acts freely and
cocompactly on any X;. Since the complexes X; are already
(n — 2)-connected, it follows that G, is of type F,_;.

As for the other direction, we have to prove that the
directed system (X;), is not essentially (n — 1)-connected. Note that
X, being a product of trees, is a metric space with unique
geodesics. Thus, for each vertex v € X, we have a geodesic

retraction
X —{v} — Lk (v).

It follows that a sphere in X is not 0O-homotopic in X — {v} unless

it has a O-homotopic image in Lk (v). Moreover, we have a retraction
Lk (v) = K {af, 4} = $"7' = K {zi, ui}
i i

induced by xft—)xi and yf|—>yi. This way, we recognize ascending
links of vertices as retracts of the links.

Now, we are ready to construct, for any specified number ¢,
an (n— 1)-sphere in X, that does not die in X;. To do this, let us
fix a vertex v € X whose height is <t. The ascending link Lk'(v) is
a sphere of dimension n—1. It is spanned by the ascending edges
starting at v. Each of these edges lives in some component tree 7;
and can be extended in this factor to a geodesic ray. This way, we
can move the sphere up inside X until it reaches height 0. Let S be
the sphere obtained that way. Since we used geodesic rays, S maps

homeomorphically to Lk'(v) under the geodesic retraction
X —{v} — Lk (v)

and is, by our previous considerations, not (O-homotopic in
X —{v} 2 X;.

It follows that the directed system X; is not essentially
(n — 1)-connected whence G, is not of type F,. q.e.d.
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