where H runs through all finitely generated subgroups of (. Since
any compact (finite) subset of (G is contained in one of these
subgroups, this representation has almost invariant vectors — just
consider the action of the finite subset on an appropriate summand
where it fixes the coset of the identity. Since G is supposed to be
Kazhdan, we conclude that the representation has an invariant
vector.

Hence one of the summands has an invariant vector. Such a
vector corresponds to a constant function on G/H. Hence this
quotient is finite. Therefore, (G is virtually finitely generated

and hence finitely generated. q.e.d.

Corollary 1.46. Locally indicable groups do not have Kazhdan’s
property (T).

Proof. Being discrete and Kazhdan, the group is finitely generated.
Being finitely generated and locally indicable, it is

indicable. q.e.d.

1.4 The Geometry of the Cayley Graph

Definition 1.47. Let (G be a group with finite generating system X.
The (left) Cayley graph I'y (G) is a (directed and labeled) graph.

Its set of vertices is (G, and for each vertex g € G and each
generator z € ¥, there an edge (labeled by z) from g to gx. Note
that G acts from the left on I'y (G).

There is a corresponding notion of a right Cayley graph

upon which G acts from the right.

Remark 1.48. We usually do not care about the direction of edges or
the labeling. Thus we regard the Cayley graph as a metric space:
every edge has length 1 and the distance of any two points is the
length of the shortest path connecting them. This length is finite
since the Cayley graph is connected — this follows from the

assumption that X generated G: any element of G can be written as
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a word in the generators (and their inverses) and this translates

into a path connecting the group element to the identity element.

Example 1.49. Here is the Cayley graph [} (Cuo):

VR SR Sk AR SR I IR

And here this is what I'jy3) (Cs) looks like:

Let us provide one example of how to make use of the Cayley graph.
We already now ba (1.44) that a group is finitely generated if it
has a finitely generated subgroup of finite index. As we shall see,
the converse holds true, as well. This follows from the following

lemma when applied to actions on Cayley graphs.

Lemma 1.50. Let the group G act on the connected topological space
X and suppose that there is an open subset U such that )(::ija;glﬁ
Then G is generated by S:={ge€ G |gUNU # 0}.

Proof. Let H :=(S). Then the two sets HU and (G — H)U are both
open. In addition, they are disjoint: Suppose we had hU N fU # ()
for some h€ H and f € G— H. Then f~'h€ H and therefore fc H
contrary to our assumption.

As X is connected, the set (G— H)U is empty as the other
one cannot be empty. Hence G — H =1). q.e.d.

There are variations of this lemma, e.g., on group presentations.

We will encounter them later.

Corollary 1.51. 4 finite index subgroup of a finitely generated

group s finitely generated.
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Proof. Let G be a group with finite generating set ¥ and let H be a
subgroup of finite index. Let ry,...,7, be a list containing a
representative for each H-coset in (. Hence every vertex of the
Cayley graph I'y (G) lies in the orbit of one of the r;. Let U be the
union of open stars of the r;. The hypotheses of (1.50) are

obviously satisfied. Hence
{he HlWUNU # 0} ={h € H|hr;=gr; for some g € XU{1}}
generates H. But that set is finite. q.e.d.

Exercise 1.52. Let I' =TIy (G) be a Cayley graph for the infinite,
finitely generated group G with respect to the finite generating
system X. Show that I' contains a bi-infinite short-lex geodesic
(defined below).

Any edge path in I' reads a word in Y WX !: while you are

moving along the path, you pick up the labels of the edges you are
going along, when you move with the direction of the edge you read
the label, when you are going against the directed edge in I' you
read its inverse.

Fix an order on the set . This induces an ordering on
the set of word with letters from X: shorter words precede longer
words and you use the lexicographic order to break ties. Regarding
inverses as lower case variants of the capital letters in Y, we
actually have an order on words in YW X~!. Every group element is
represented by a unique short-lex minimal word. Hence any to
vertices in I' are joined by a unique short-lex minimal edge path.

We call those paths short-lex geodesic segments. Note that they

are, in fact, geodesic segments.

Now a (bi-infinite) short-lex geodesic is a (bi-infinite)

edge path such that every finite sub path is a short-lex geodesic.

Hint: First prove that [' contains a bi-infinite geodesic.
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1.4.1 Ends

Definition 1.53. A diagram (of sets and maps) is a directed graph D
whose vertices v are labeled by sets M, and whose edges @ are

labeled by maps f= : M,») — M;»). The inverse limit of D is the

set

@D = {(mv € MU)UEV(D) ‘ fe (mb(?)) = my) for all e c& (D)}
Note that there are natural maps ylnD — M, for all vertices v e D
and all triangles

gg}l) — M=)

S fe
M,

commute.

Definition 1.54. Let X be a topological space. For any two nested

compact subsets, ' C D C X, we have a natural map
(X — D) = 1o (X = C).

As compact subsets in X form a directed set, we can write the

inverse limit

8OOX = @l’ﬂ'o(X—C)
X

cc

The elements of the set 0,X are called the ends of X.

Example 1.55. The two Cayley graphs of (C, both have precisely two

ends.

Observation 1.56. This construction ts functorial, so homeomorphisms

of X induce bijections of OxX and we have a group homomorphism
Homeo (X) — Perm (05,X) .

In particular, if X =1x(G) is a (left) Cayley graph for a group G,
there is a natural action of G on O,y turning the set of ends into

a G-set.
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Exercise 1.57. The number of ends in a Cayley graph is 0, 1, 2, or
oo: Let I':=Ty(G) be the Cayley graph for the group G with with
respect to the finite generating set . Show that if I' has finitely
many ends, then the number of ends is < 2. Hint: Assume [' has
three ends. Then there should be a central region where theses ends
get tied up. But a Cayley graph looks homogeneous as there is a
vertex transitive group action, hence there cannot be a

distinguished region.

Exercise 1.58. Given the same setup as in (1.57), show that the
number of ends (0, 1, 2, or oo) is independent of the choice of the

finite generating system X.

The following theorem relates the geometry of a Cayley
graph to a purely algebraic property of a group. In this respect it
is like Gromov’s theorem 1.70. But it is way simpler, and it is
about Cy.

Theorem 1.59. A group has two ends <f and only <f 1t ts wvirtually
Cw -

Proof. That a group which is virtually C, has two ends is easy. We
only proof the converse. So let X be a generating set for G such
that the corresponding Cayley graph [' has two ends.

Our group G acts on Oy [' and the kernel of this action has
index <2 in (G whence we may assume without loss of generality that
G fixes both ends of .

Since I' has two ends, there is a compact subset C such
that I' — C' has exactly two infinite components W_ and W,. We add
all finite component of I' — C and can henceforth assume that the two
infinite components are all there is in I'—(C. Since our space is
infinite, there is an element g € G that moves C off itself:
gCnNC=0.

First, we show that ¢g has infinite order. The translate
gC lies in one of the components. We assume gC C W,. Then

gW, C W, for otherwise ¢g would swap the ends of I'.
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w ) [w, _[Gw%

Hence we find
Wy 2 gWe 2 g*We 2

and it follows that ¢g has infinite order.

Let D be a compact subset containing C and its translate
gC such that I' — D has exactly two components both of which are
infinite. It follows that

We infer, that I‘::Lb>09”WL whence FL>09”WQ.::@. Similarly,
rL<OgW@C,::®. Moreover, for any 7 >0,
F=g"W_U |J ¢Dugw,
—i<j<i
whence
I'= LJgSIl
SEZ

This, however, implies that D contains a representative for each
coset in (¢)\G. Hence (g) has finite index in G. q.e.d.
1.4.2 Growth

Definition 1.60. The growth function [y of G relative to Y is
defined by

Bs (n) := vol (B, (1))

where B, (1g) is the ball of radius n in the Cayley graph centered at

l¢ € G and volume is measured by counting vertices.
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Example 1.61. For the two Cayley graphs of C,, we find:

By (n)=2n+1

and
1 n=20
/3{2,3} (n) =45 n=1
6n+1 n>2

Note that any generating set for ( will yield an ultimately linear

growth function.

Definition 1.62. Let [ and (' be two functions defined on IN. We say
B weakly dominates [ if there are constants L and K such that

B(n) < LB (Ln+ K) + K.

We write f < ['. We say that [ and (' are weakly equivalent if they

weakly dominate one another:
Brepl=B2p & B 2P

Remark 1.63. Weak domination is transitive, and weak equivalence is

an equivalence relation.

Observation 1.64. Let Y and = be two finite generating sets for G,
then the growth functions Py and b= are weakly equivalent. To see
this write the elements of = as words in X let | be the mazimum
length that occurs in this list of words. Then any n-ball in 'z s

contained in the In-ball in I's which proves [z = fx. q.e.d.

Exercise 1.65. Let (G be finitely generated and H be a subgroup of
finite index, which is, therefore, finitely generated, as well.
Show that the growth functions for these two groups are weakly

equivalent.
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Observation 1.66. For an infinite group with gemerating set X, we

have
n<py(n) <> @S|
i=0

Since there are at most as many elements in the n-ball as there are
words of length <n in the generators (and their inverses!). The
Lower bound follows from the fact that the Cayley graph is connected

and infinite. q.e.d.

So growth in groups is somewhere between linear and exponential.

One distinguishes three cases:

Definition 1.67. A finitely generated group is of polynomial growth

if its growth function is weakly dominated by a polynomial. It is

of exponential growth if it weakly dominates an exponential

function. Otherwise it is of intermediate growth.

Exercise 1.68. Show that a finitely generated group with infinitely

many ends has exponential growth.
Proposition 1.69. Groups of subexponential growth are amenable.

Proof. We will show that a group (G of sublinear growth has a Fglner
sequence consisting of balls B, (1g). For assume this was not the
case, then there is an ¢ > (0 such that for any ball B, there is an

element = € ¥ such that

|zB, AB,|

> €.
Bl

Since B,,; contains as well B, as zB,, we have:
€ €
Bz (n+1) = [Buya| > 2B, UB,| > (145 ) Bl = (1) Bs (n)
From this, it is obvious that (G has exponential growth. q.e.d.

In particular, groups of polynomial growth are amenable. However, a

very deep theorem says that we already knew that:
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Theorem 1.70 (Gromov [Grom81]). 4 finitely generated group has
polynomial growth <f and only <f 1t %s wvirtually nilpotent.

This is way too deep for this exposition, and fortunately it is not
a statement about the infinite cyclic group. However, there is a

characterization of C, by means of its growth:

Theorem 1.71. A group has linear growth i1f and only if <t s
virtually Cu.

Before we prove this, we need a geometric lemma on growth rates.

Lemma 1.72. Let H be a subgroup of G of infinite index. Let X be a
finite generating system for H and = a finite generating set for G

that contains Y. Then:
B=(2n) > (n+1) Bs (n) for all ne N

In particular, if H has polynomial growth of degree d, then G has
at least polynomial growth of degree d+1.

Proof. Let X := H\I'z(G) be the space of orbits of vertices in I'z(G)
under the action of H. We turn this into a metric space by defining
the distance of two orbits to be the minimum distance of two
representatives. Note that we can choose one of them at our will.

A pair of representatives realizing the distance shows that two
points of distance m in X are joined by a path of length n. It
follows that the ball B, (H) C X contains at least n+ 1 points

Zo,.-. ,Tn. Each of these vertices has a representative

gi € B,(1g) CI's. Now we consider translates of the balls in 'y (H).
We find

B, (1g) 2 U B, (1x) gi

i=0
and the inequality follows from the fact, that the union is

disjoint. q.e.d.
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Proof of Theorem 1.71. Since finite groups have “constant growth”
which is not linear, we have to consider infinite groups only. One
direction is obvious: If a group has an infinite cyclic subgroup of
finite index, it has linear growth. So we have to show the
converse: Any infinite group G of linear growth contains an
infinite cyclic subgroup of finite index. By the preceding lemma,
it suffices to show that there is an element of infinite order in G
since the infinite cyclic subgroup it generates cannot have infinite
index in G.

Let us fix a finite generating set X for (. We know by
(1.52) that there is a bi-infinite short-lex geodesic inside the
Cayley graph [':=Ty (G).

First we prove that this geodesic is ultimately periodic
at its “right end”: There is a constant L such that, for infinitely

many n, we have:
vol (B,,) —vol (B,,_1) < L (1)

Consider a finite subset of vertices W ={v;,vs,...,v,} on the
geodesic with » > L. For any n that satisfies (1), there is a pair
of distinct vertices v,w € W such that the geodesic segments of
length n starting at these vertices and extending to the right both
read the same word. Since there are infinitely many such n, there
is a pair of vertices for which this happens infinitely many times.
It follows that the geodesic is ultimately right periodic.

The group element represented by the period obviously has
infinite order. So we have our desired cyclic subgroup of finite

index. q.e.d.
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