2 Free Groups of Finite Rank

Definition 2.1. Let M be a set. The free group F)s generated by M

is a group that contains M as a subset and that is uniquely
determined up to unique isomorphism by the universal property that
any map f: M — G from M to any group (G extends to a unique group
homomorphism ¢ : Fyr — G.

Remark 2.2. The elements of F); are reduced words in the alphabet
MW M~'. Multiplication is concatenation of words followed by

reduction, i.e., cancellation of subwords mm™!

until no longer
possible. The empty word serves as the trivial element. Of course
there are some claims here to be proved, but you are supposed to

have done this already in some other class.

2.1 Free Constructions

Definition 2.3. Let D be a diagram of groups (, and homomorphisms

o2 : G 2) = Gr»). The direct 1limit of D is a group hg;l) together
with homomorphisms LU:(?v—+1§gl? such that

1. all triangles

li_n}D — G
S fe
Gye)

commute.

2. Given any other group H together with a family of homomorphism
¢y : G, = H making the corresponding triangles (as in 1)
commutative, there is a unique homomorphism ﬂ':ﬁggl)-—)l? such

that all triangles

G, = H
lw A/
ling D

commute.



Exercise 2.4. The usual category theoretic nonsense proves
uniqueness of direct limits for free. Show that direct limits exist

in the category of groups and homomorphisms.

Definition 2.5. Let (' A and C' — B be two monomorphisms. The

amalgamated product A *c B is the direct limit of the diagram

A+~ C—B

The free product G x H of two groups is their amalgamated

product along the trivial group:
G+ H:=1lim(G <+ 1— H)

These cases arise naturally in topology.

Example 2.6 (van Kampen). Let X be a path connected topological
space with base point. Assume we are given a open cover X =U UV
such that U, V, and X NV are path connected subsets of X that

contain the base point. Then
T (X) =m0 (U) *5,wewy m1 (V)

Example 2.7. The free group on n generators is the free product of n

copies of Cy:

F, = ﬂ<(ln

i=1

In general, the free group generated the set M is

FMZ: >|< Coo

Observation 2.8. As a consequence of wvan Kampen’s theorem, we see
that a group is free if and only if it is the fundamental group of a
graph.

Corollary 2.9. Subgroups of free groups are free.
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Proof. Let [’ be a free group. Then [’ is the fundamental group of a
graph. Its subgroups occur as fundamental groups of covers.
However, any cover of a graph is a graph. Hence any subgroup of F

is the fundamental group of a graph and, therefore, free. q.e.d.

Observation 2.10. Obviously, we can construct very large covers. In

particular, F, contains a copy of Fy.

Observation 2.11. From their geometric realization, we can read off

a presentation for free groups:
F,={(x1,...,z,)

Each generator corresponds to a loop in a wedge of n circles. The

Cayley graph of F, corresponding to this system of free gemerators

13 the universal cover of the wedge of circles. It is a tree.

Corollary 2.12. Non-abelian free groups have exponential

growth. q.e.d.

Exercise 2.13 (Schreier’s Index Formula). Let (G be a subgroup of F,

of finite index s. Prove that G is isomorphic to Fy;_1)_;-

2.2 How to Detect Free Groups?

Lemma 2.14 (Ping Pong Lemma). Let G be a group acting on a set M.
Suppose Hy; and H, are two subgroups of G with cardinalities at
least 3 and 2, respectively. Let H be the subgroup generated by H;
and H.

Assume that there are two non-empty subsets S; and Sy in M

such that
Sy € 51
g5y C 51 for all g€ Hy,g#1
951 € Sy for all g€ Hy,g #1
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Then H <s isomorphic to the free product H; x H,.

Proof. We have to show that a product whose factors are all
non-trivial and alternately taken from the groups H; and H, is

non-trivial. We start by considering a product of odd length
w = arbiagby - - - by_10,
wherein a; € H; — {1} and b; € H, — {1}. We have
wSy = arbiagby - - - by 14,52 C arbraghy - --b, 151 --- C a5, T Sy

whence w acts non-trivially as S Z S;.

For a word that starts and ends with a letter from H,;, we
conjugate it by a non-trivial element from H;. As conjugation
preserves being trivial or non-trivial, we are reduced to the first
case.

For a word of even length, only one boundary letter is in
H;. Let this letter be a € H;. Conjugation by an element of
H —{1,a} reduces us to the first case. Here, we need that H; has at

least three elements. q.e.d.

Example 2.15. Let 7 be a tree. An automorphism of 7 is called
hyperbolic if it stabilizes a bi-infinite geodesic in 7' upon which
it acts as a non-trivial shift. Then, this geodesic C, is unique
and called the axis of the automorphism.

Let ¢ and v be two hyperbolic automorphisms of 7" with

disjoint axes. Then (p,9) is free.

Proof. We will study the action on the set of ends J,7. Note that
each oriented edge @ defines a decomposition 0,7 =0l ¢ Wo_ ¢ as

in the picture:
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estesetin,,,

R v -/

Then any non-trivial power of ¢ will suck all of JL € into 01 ¢ and

any non-trivial power of 1 will take 01 ¢ into O_¢. Hence

(0, 9) = () * (¢)

which is a non-abelian free group. q.e.d.

Exercise 2.16. Suppose ¢ and 9 are two hyperbolic automorphisms of a

tree 7 whose axes have a finite intersection. Show that

sufficiently high powers ¢ and 1! generate a free group.

Exercise 2.17. Show that F, embeds into Cy * (5. Here, (), is the

cyclic group of order n.

2.5



1 2 10
Example 2.18. The two matrices ( 01 ) and ( 5 1 ) generate a free

group inside SL,(Z).

Proof. Each of the two matrices generates an infinite cyclic
subgroup inside Sl (Z). So we have to consider the group generated

by the subgroups

) {07}
w={(4 1))+
) )

{0

To verify the hypotheses of the Ping Pong Lemma, we compute

(3)0)-)

whence we have to show that for |z| < |y| it follows that |z + 2sy| > |y].

This is obvious from the triangle inequality:
|z + 2sy| > [2sy| — |2 = [y[ + ((2s = 1) [y[ — [=])
The other hypothesis is checked analogously. q.e.d.

Corollary 2.19. Finitely generated free groups are linear and

restdually finite.
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Proof. As we have seen, F, embeds into SL,(Z), which is residually
finite as every non-trivial element survives in a factor SL,(Z/pZ)

where p is a sufficiently large prime number. q.e.d.

A way more sophisticated application of the Ping Pong
Lemma (or better: a slight variation of it) are the following

celebrated theorems due to J. Tits:

Theorem 2.20 (Tits [Tits72]). Over a field of characteristic 0, a
linear group either ts wvirtually solvable (i.e., %t s small) or has

a non-abelian free subgroup (i.e., it is big).

Theorem 2.21 (Tits [Tits72]). 4 finitely generated linear group

etther ts wvirtually solvable or has a non-abelian free group.

These results (and many others that followed) motivates

Definition 2.22. A group (G satisfies the Tits Alternative if each

finitely generated subgroups either is virtually solvable or

contains a non-abelian free group.

Remark 2.23. Tits’ result states that linear groups satisfy the
Tits-Alternative. Another example would be Out (F},).

Exercise 2.24. Show that a virtually solvable group cannot contain a

non-abelian free group.

Exercise 2.25. By Tits’ theorem, the group SO;(R) has a non-abelian
free subgroup. Find an embedding of F, — SO3(R).

2.3 Kazhdan’s Property (T) and Amenability

We already observed (1.45) that non-abelian free groups do not have
Kazhdan’s property (T). However, although property (T) and
amenabilty are mutually exclusive for infinite groups, they are not

complementary.
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Theorem 2.26. Non-abelian free groups are nmot amenable.

Proof. We only do the argument for Fy = (z,y) Consider the following

bounded functions on Fj:

1 if w=1
f1 Dw—
0 otherwise

1 if w starts with z
fz @ w—
0 otherwise

1 if w starts with Z

fz 1 w—
0 otherwise
{1 if w starts with y

0 otherwise

1 if w starts with y

0 otherwise

Obviously,

l=fi+fotfotfy+ iy

Now we form

h = f1+ifw+$f@+§fy+yfy
We have

5 if w=1
h(w) =

3 otherwise

This clearly rules out the possibility of an invariant measure on

this group. q.e.d.

The trick in this proof motivates
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Definition 2.27. A paradoxical partition of unity is a finite

partition of unity
I=fi+--+fr
together with an r-tupel of group elements g¢;,...,¢, such that:
e Each f is a bounded function.

e There is an ¢ > ( satisfying

afi+-—+ogfr>1+¢

Observation 2.28. No amenable group admits a paradozical partition
of unity.
2.3.1 Equivalent Formulations for Amenability

Definition 2.29. Let I' be a (multi)-graph. A flow on ' is a map

D : 2?(F)—+]R on the oriented edges satisfying

o (TP =-0(%)
For any vertex v of I[', the net production is

P= ) &(@)

v=u(2)

A vertex is called a source if its net production is >0, a sink if
its net production is <0 and it is called balanced if its net

production is 0. A flow ® is called e-productive if every vertex

has net production > e¢.

A capacity on I' is a map C7:3?(F)—+]R+. The flow & is

bounded by the capacity C if ® (%)< C» for each oriented edge €.

Note that a geometric edge can have different capacities in its two

directions.

Let v and w be two vertices in I'. A cut is a set of

oriented edges in I' such that any path from v to w has to pass
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through at least one edge in the cut thereby respecting the given
orientation of that edge. (It may pass through other edges in the
cut in any representation, but at least one edge has to be crossed
“in the right direction”.)

For any set of vertices W CI', its boundary OW is the
set of edges with one endpoint inside W and the other endpoint

outside W.

For finite graphs, we have the following nice correspondence:

Theorem 2.30 (max flow equals min cut). In a finite graph with one
source O and one sink I, the mazimum net productivity of any flow
bounded by a capacity C is the minimum total capacity of edges in a

cut.

Proof. First observe that for any any flow ® and any minimal cut set
Emin s

Py(O)=-P= Y @(@)< > Co

©EEmin @€ Emin
holds. So we only have to prove that there is a flow whose
throughput realizes the capacity of a minimal cut.
The set of all flows on [' bounded by C with unique source
at O and unique sink at / is compact and the net production of the
source is a continuous function. So let ® be a maximum flow.

Consider the set of vertices

there is a path
e e e
W:=3%vel| O=y— v —> - —Sv=v

such that @ (¢;) < C=,

reachable from the source be means of a non-saturated path.
Clearly, [ ¢ W, since otherwise we could increase the flow along a
non-saturated path from O to I.

Hence



is a cut. In addition, every edge in E is saturated, for otherwise
its end point would be in W. The capacity of E clearly equals the

net production of the source. q.e.d.

Theorem and Definition 2.31. Let [' be a graph and ¢ > 0. Then the

following are equivalent:

1. For any finite set of vertices W CT,

oW ]
1 >¢
Wi

2. There is an c-productive flow ® bounded by capacity 1.

If I' satisfies the condition 1 above for an € >0, we say I' satisfies

a strong isoperimetric inequality.

Proof. Let W be a finite set of vertices in I'. It is obvious that
an e-productive flow will have to move a total mass of ¢ |W| out off
this area. However, as all edges have capacity bounded by one,
there must be at least that many edges leaving W. Hence (2)
clearly implies (1).

To prove the other direction, we employ the following
strategy: First we use the min-flow-max-cut theorem to prove that
for any finite set of vertices W, we can find flow @y that is
bounded by 1 yet “looks” ec-productive on W. In a second step, we
use an ultrafilter construction, to patch these flows together.

Let W be a finite set of vertices in I'. We collapse the
complement of W to a single vertex I (the sInk). We assign a
capacity of 1 to all edges. Now, we introduce a new vertex O (the
sOurce) which we connect by a new edge to any vertex in W; to all

the new edges we assign the capacity ¢.
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Let us compute the minimal capacity of a cut separating the source O
from the sink /. Any cut splits W into two parts: the set Wy of
vertices still connected to the source O after removing the cut, and
the set W; of vertices still connected to the sink afterward.
Obviously, all those e-capacity edges connecting O to points in W
are in the cut set. They contribute a total capacity of ¢|W;|. On
the other hand, all of the boundary OW, belong to the cut, as well.
Each of these edges has a capacity of 1, but there are at least
£|Wo| of these because of the isoperimetric inequality (1) as
applied to Wy — recall that we want to prove (2) from (1).

So the total capacity of any cut set is at least
e|Wr|+¢e|Wo| =€ |W| whence there is a flow @y of this throughput by
the max-flow-min-cut theorem.

We delete the source and the e-capacity edges, undo the
collapse which created the sink, and re-interpret ®y as a flow on I
where all edges outside are assigned (0. This flow ®y is bounded by
1 and has net production P, =¢ for every vertex in W. This
completes the first step of the construction.

The second step is to construct a flow that has net
production ¢ everywhere. To do this, pick your favorite ultrafilter
U refining the coinitial filter on the directed set D of finite
vertex sets in I'. For each element I/ in this index set D, already

have a flow ®y. So if we want to define the global flow ® on an
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oriented edge 7?, we put
@ (€) :=U-limdy (€)
It is a routine matter to check that this does the job. q.e.d.

Definition 2.32. A generating set X for a group G is symmetric if
Y =%"!. For symmetric generating sets, one usually uses the

-1
reduced (right) Cayley graph wherein the edges g-3+xg and xg—i—ég

are considered as opposite orientations of one underlying geometric

edge.

Corollary 2.33. Let G be a finttely generated group with finite

symmetric generating set X F 1. Then the following are equivalent:

1. G is amenable.
2. G has a Fglner sequence.

3. The reduced Cayley graph I' does not satisfy a strong

130perimetric inequality.

4. There is no productive bounded flow on the reduced (right)

Cayley graph.
5. G does not have a paradozical partition of unity.

In fact, one could use ordinary (unreduced, left) Cayley graphs
instead. We confine ourselves to reduced right Cayley graphs only

to avoid technical issues.

Proof. We already proved (2)==(1) and (1)==(5). The implication
(3)=—=(2) is immediate, and (4)=—(3) follows from (2.31).

The remaining implication (5)==(4) is done by
re-interpreting a flow as a paradoxical partition: Let ® be an

e-productive flow bounded by 1 on I'. Define

—-P (g i)xg) if <I>(g 1)339) <0

0 otherwise

fo (g) =
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be the outbound flow from g to og. Moreover, put

filg)=121=)_f.(9).

Obviously, we have a partition of the constant function [X].

Now compute

H@+Y 07 o1 (9) = [Z+) for(09)—fs(9)

geEL geEN
= Z+) @ (g ng)
oEX
> [X|+¢
Division by |X| yields a paradoxical partition of unity. q.e.d.

Remark 2.34. The usual way of proving these equivalences establishes

separately

1) <= (6B) <= 4
and

1) <= (2) = 3

This way, however, no relation in the numerical constants of the
isoperimetric inequality and the productivity of the flow is
established. Moreover, the implication (1) = (2) involves

functional analysis.

Exercise 2.35. A paradoxical decomposition of a group G is a

partition
G=5S1---uS, Tl y---T,
such that there are group elements ¢i,...,¢, and hi,...,hs; such that
G=gS514---4dgS,
and

G=hTi¥---dhT,
Prove that F, has a paradoxical decomposition.
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Remark 2.36. As a matter of fact, a group has a paradoxical
decomposition if and only if it is not amenable. As a criterion to
check this, however, using flows or a paradoxical partition of unity

is more easy.

2.4 The Hanna Neumann Conjecture

Definition 2.37. A group (G has the finite intersection property if

the intersection of any two finitely generated subgroups in G is

finitely generated.

Theorem 2.38 (Howson [Hows54]). Free groups enjoy the finite

intersection property.

By now, there are many proofs of this theorem. The given here is

stolen from [Shor90].

Definition 2.39. Let (G be a group with finite generating set X. A

subgroup H < (G is quasi-convex with respect to ¥ if there is a

constant R > 0 such that every geodesic path in the Cayley graph
I's (G) joining two points in H lies in an R-neighbourhood of H.
That is, every point on such a path has distance < R to at least one

point in H CT.

Example 2.40. Any finitely generated subgroup H of a free group is
quasi-convex with respect to the standard generators: Let B be a
ball in the Cayley tree I' centered at 1 containing all generators of
H. The union HB is connected and hence a subtree. Any geodesic
joining two point of H in I' actually lies in HB. The constant R,

therefore can be chosen to be the radius of B.
Proposition 2.41. (uasti-conver subgroups are finitely generated.

Proof. Let G, H, ¥, and R be as in the definition (2.39), and let
B be the open ball in I'=Tyx(G) of radius R+ 1. It is easy to see
that

X=HBCT
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