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Abstract

This is a quick review of properties of stress matrices with re-
spect to the global rigidity of tensegrity frameworks, and recent re-
sults about generic global rigidity. Then there are some applications
and connections to finding specific geometric configurations that are
globally rigid. Several conjectures and questions are mentioned. Also,
a proof is given that vertex splitting preserves generic and geomet-
ric global rigidity under a mild additional assumption on the starting
framework.

1 Introduction

Most of the recent results concerning global rigidity have been concerned
with generic global rigidity of bar frameworks. In [6], I showed that if a bar
framework G(p) has a stress matrix Ω of maximal rank and it is infinitesi-
mally rigid, then it is globally rigid when the configuration p is generic. This
result was motivated by a similar condition for a tensegrity, but with the
additional condition that Ω be positive semi-definite. Then in [3, 17] Berg,
Jackson, and Jordán show that in the plane, generic redundant rigidity and
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vertex 3-connectedness is equivalent to generic global rigidity. This gives a
entirely combinatorial condition for generic global rigidity in the plane for
bar frameworks, and this condition can be calculated deterministically in
polynomial time. Meanwhile, in [11], Gortler, Healy, and Thurston show
that my condition on the stress matrix Ω, is necessary as well as sufficient
for generic global rigidity for bar frameworks in Ed. (This is all assuming
that the bar framework is not a simplex.)

One of the drawbacks of these results is that the generic hypothesis is
ambiguous as to just what configurations are to be avoided to insure global
rigidity. Even when G(p) has a stress matrix Ω of maximal rank and it is
infinitesimally rigid, it may not be globally rigid in Ed at the configuration
p such as Figure (1a). This is in contrast to generic rigidity itself, because
when G(p) is infinitesimally rigid in Ed, it is automatically rigid.

Here I will discuss some conjectures, questions, and a few results where it
may be possible to determine certain determined configurations p where it is
possible to say that G(p) is globally rigid at the configuration p, which can be
constructed fairly reasonably. A natural point of view for these constructions
is to consider G to be a tensegrity with cables and struts, where cables have
a positive stress and struts have a negative stress, instead of bars. The cables
are only constrained to not increase in length, and the struts are constrained
to not decrease in length.

A conceit I like is to say the tensegrity G(p) dominates the tensegrity
G(q), and write G(q) ≤ G(p), for two configurations q and p, if

|pi − pj| ≥ |qi − qj| for {i, j} a cable,

|pi − pj| ≤ |qi − qj| for {i, j} a strut and (1)

|pi − pj| = |qi − qj| for {i, j} a bar.

We say a tensegrity G(p) is globally rigid in Ed if for any other config-
uration q of the same labeled nodes in Ed, G(q) ≤ G(p) implies that q is
congruent to p. In other words, if the member constraints of (1) are satisfied
by q, then there is a rigid congruence of Ed given by a d-by-d orthogonal ma-
trix A and a vector b ∈ Ed such that for i = 1, . . . , n, qi = Api + b. Indeed,
even more strongly, regard Ed ⊂ ED, for d ≤ D. If, even though G(p) is in
Ed, it is true that G(p) is globally rigid in ED, for all D ≥ d, then we say
G(p) is universally globally rigid. The example in Figure (1a) is rigid in the
plane, but not globally rigid in the plane, since it can fold around a diagonal.
Figure (1b) is globally rigid in the plane but not universally globally rigid,
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since it is flexible in three-space. Figure (1c) is universally globally rigid.
These are all bar frameworks.

(c)(b)(a)

Figure 1: Three examples of planar rigid bar frameworks.

The local and global rigidity of the examples in Figure 1 are fairly easy to
determine, but what are some tools to use for more complicated tensegrities?

The energy function Eω helps. Let ω = (. . . , ωij, . . . ) be a proper stress
for a tensegrity graph G (i.e ωij ≥ 0 for {i, j} a cable, and ωij ≤ 0 for {i, j}
a strut). For any configuration p of nodes in Ed, define the stress-energy
associated to ω as

Eω(p) =
∑
i<j

ωij(pi − pj)
2, (2)

where the product of vectors is the ordinary dot product, and the square of
a vector is the square of its Euclidean length.

So if G(p) dominates G(q) and ω is a proper stress for G, then Eω(p) ≥
Eω(q), and when ω is strict and Eω(p) = Eω(q), then |pi−pj| = |qi−qj| for
all the members {i, j} of G. The conditions of (1) are called the tensegrity
constraints.

The idea is to look for situations when the configuration p is a minimum
for the functional Eω. The first step is to determine when p is a critical
point for Eω. This will happen when all directional derivatives given by
p′ = (p′1, . . . ,p

′
n) starting at p are 0. So we perform the following calculation

starting from (2) for 0 ≤ t ≤ 1:

Eω(p + tp′) =
∑
i<j

ωij((pi − pj)
2 + 2t(pi − pj)(p

′
i − p′j) + t2(p′i − p′j)

2).

Taking derivatives and evaluating at t = 0, we get:

d

dt
Eω(p + tp′)|t=0 = 2

∑
i<j

ωij(pi − pj)(p
′
i − p′j). (3)
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At a critical configuration p, equation (3) must hold for all directions p′, so
the following equilibrium vector equation must hold for each node i:∑

j

ωij(pj − pi) = 0. (4)

When equation (4) holds for all i = 1, . . . , n, we say ω is an equilibrium stress
or equivalently a self stress, or just a stress for p when the equilibrium is clear
from the context. To get an understanding of how this works, consider the
example of a square in the plane as in Figure 2. It is easy to see that the
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Figure 2: A square tensegrity with its diagonals, where a proper equilibrium
stress is indicated.

vector equilibrium equation (4) holds for the three vectors at each node, even
though many people tend to put −

√
2 instead of −1 for the strut stresses.

2 The stress matrix

The stress-energy function Eω defined by (2) is really a quadratic form. It
is an easy matter to compute the (symmetric) matrix associated to that
quadratic form. For any stress ω, where ωij = ωji for all 1 ≤ i ≤ j ≤ n,
define the associated n-by-n stress matrix Ω such that the (i, j) entry is
−ωij for i 6= j, and the diagonal entries are such that the row and column
sums are 0. Recall that any stress ωij not designated in the vector form
ω = (· · · , ωij, · · · ) is assumed to be 0.

With this terminology regard a configuration p = (p1, . . . ,pn) in Ed as a
column vector. We see that Eω is essentially given by the matrix Ω repeated
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d times. The tensor product of matrices (or sometimes called the Kronecker
product) gives the matrix of Eω as Ω⊗ Id, and

Eω(p) = (p)T Ω⊗ Idp.

It is also convenient to rewrite the equilibrium condition (4) in terms of
matrices. Define the configuration matrix for the configuration p as

P =

(
p1 p2 · · · pn

1 1 · · · 1

)
,

a (d + 1)-by-n matrix, and the equilibrium condition (4) is equivalent to

P Ω = 0.

Each coordinate of P as a row vector multiplied on the right by Ω represents
the equilibrium condition in that coordinate. The last row of ones of P
represent the condition that the column sums (and therefore the row sums)
of Ω are 0. It is also easy to see that the linear rank of P is the same as the
dimension of the affine span of p1, . . . ,pn in Ed.

Suppose that we add rows to P until all the rows span the co-kernel of
Ω. The corresponding configuration p will be called a universal configuration
for ω (or equivalently Ω).

Proposition 1. If p is a universal configuration for ω, any other config-
uration q, which is in equilibrium with respect to ω, is an affine image of
p.

Proof. Let Q be the configuration matrix for q. Since the rows of P are
a basis for the co-kernel of Ω, and the rows of Q are, by definition, in the
co-kernel of Ω, there is a (d + 1)-by-(d + 1) matrix A such that AP = Q.
Since P and Q share the last row of ones, we know that A takes the form

A =

(
A0 b
0 1

)
,

where A0 is a d-by-d matrix, b is a 1-by-d matrix (a vector in Ed), and the
last row is all 0’s except for the 1 in the lower right hand entry. Then we see
that for each i = 1, . . . , n, qi = A0pi + b, as desired.

5



The stress matrix plays a central role in what follows. Note that when
the configuration p is universal, with affine span all of Ed, for the stress ω,
the dimension of the co-kernel (which is the dimension of the kernel) of Ω is
d, and the rank of Ω is n− d− 1. But even when the configuration p is not
universal for ω, it is the projection of a universal configuration, and so the
rank Ω ≤ n− d− 1.

Projective transformations of the configuration p are also very friendly
with regard to stress matrices.

Proposition 2. If p is a configuration of n nodes in Ed with stress ω and
stress matrix Ω, then any non-singular projective image q of p has a cor-
responding stress ω̄ with stress matrix given by Ω̄ = DΩD, where D is an
n-by-n diagonal matrix with non-zero diagonal entries.

Proof. The argument is similar to Proposition 1. The projective transfor-
mation can be described as AP = Q̃, where P is the configuration matrix for
p, the columns of Q̃ represent the nodes of q up to scaling in Ed+1, and A is
a non-singular (d + 1)-by-(d + 1) matrix such that each entry of the bottom
row of Q̃ is non-zero. Then the configuration matrix for q is

Q = APD−1 = Q̃D−1 =

(
q̃1 q̃2 · · · q̃n

λ1 λ2 · · · λn

)
D−1 =

(
q1 q2 · · · qn

1 1 1 1

)
,

where D is the diagonal matrix with λ1, λ2, · · · , λn in the main diagonal.
Then QΩ̄ = QDΩD = APD−1DΩD = APΩD = 0. Thus q is in equilibrium
with respect to ω̄ as required.

Note that the sign of the stresses may change under a projective trans-
formation, but the signature of the stress matrix (the number of positive
eigenvalues, the number of negative eigenvalues, and the number of zero
eigenvalues) does not change. Indeed, a cable becomes a strut, or a strut be-
comes a cable, when a point on its relative interior is sent to infinity. Figure
3 shows how this works for a tensegrity similar to Figure 5 in [19]. Figure
(3a) is a Roth polygon as in [4].

3 The fundamental theorem

We come to one of the basic tools for showing specific tensegrities are globally
rigid and more. If ω is a proper equilibrium stress for the tensegrity G(p),
and ωij 6= 0, then pi − pj is called a stressed direction, and the member
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Figure 3: Figure (a) is transformed by a projective transformation to get
Figure (b). The corresponding nodes are labeled and the line that is sent to
infinity is shown. Each member that crosses that line has changed from a
cable to a strut and vice-versa.

{i, j} is called a stressed member. Note that if G(q) ≤ G(p), ωij 6= 0, and
|pi − pj| 6= |qi − qj|, then Eω(q) < Eω(p). So if p is a configuration for the
minimum of Eω, the stressed members are effectively bars.

Theorem 3. Let G(p) be a tensegrity, where the affine span of p = (p1, . . . ,pn)
is all of Ed, with a proper equilibrium stress ω and stress matrix Ω. Suppose
further

1.) Ω is positive semi-definite.

2.) The configuration p is universal with respect to the stress ω. (In other
words, the rank of Ω is n− d− 1.)

3.) The underlying bar framework Ḡ(p) is rigid, where Ḡ replaces each
member {i, j} with ωij 6= 0 of G with a bar.

Then G(p) is universally globally rigid.

The proof of this is in [4]. Condition 3.) can be replaced with the condi-
tion that the stressed directions, regarded as points in the projective space
RPd+1, do not lie on a quadric at infinity. Without Condition 3.) there could
be an affine flex of the configuration, but that is the only possibility. So any
condition, such as infinitesimal rigidity, that insures rigidity is enough for
Condition 3.), but infinitesimal rigidity is not necessary.

With this in mind, we say that a tensegrity is super stable if it has a
proper equilibrium stress ω such that Conditions 1.), 2.) and 3.) hold. If
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just Conditions 1.) and 3.) hold and ω is strict (all members stressed), then
we say G(p) is unyielding. An unyielding tensegrity, essentially, has all its
members replaced by bars.

Figure (1a) and Figure (1b) have Conditions 2.) and 3.) hold, but not
Condition 1.), while Figure (1b) is globally rigid in the plane and Figure
(1a) is not even globally rigid in the plane. Neither of these frameworks are
universally globally rigid. There is only a one-dimensional stress space and
the corresponding stress matrices (for non-zero stresses) have eigenvalues of
opposite sign. For Figure (1c), on the other hand, there is a stress matrix
where the two non-zero eigenvalues are positive. This is a Cauchy polygon of
[4] which super stable as a tensegrity. Similarly both tensegrities of Figure
3 are also super stable, because, for example, Figure (3a) is super stable by
[4].

In order to be super stable, there must be a single stress that stabilizes
the tensegrity and similarly for a bar framework. Can the situation be more
complicated? This suggests the following question.

Question 1. Is there bar framework G(p) in Ed (necessarily with a stress
space of dimension at least 2) such that no equilibrium stress is positive semi-
definite with rank n − d − 1, but it is such that for any p′ not an affine
image of p, there is an equilibrium stress with stress matrix Ω such that
(p′)T Ω⊗ Idp′ > 0?

There are linear spaces of quadratic forms such that none are positive
definite, but for every vector, there is some quadratic form in the linear space
that is positive on that vector. Question 1 asks whether this is possible for
stress matrices modulo the kernel corresponding to affine motions.

This is to be contrasted to a recent result of Gortler and Thurston [12].

Theorem 4. If G(p) is bar framework in Ed, with p generic, and G(p)
universally globally rigid, then G(p) is super stable. In other words there is
a stress ω and corresponding stress matrix Ω, such that it has rank n− d− 1
and is positive semidefinite. (Affine motions are easy to eliminate.)

4 Affine transformations

An affine transformation or affine map of Ed is determined by a d-by-d matrix
A and a vector b ∈ Ed. If p = (p1, . . . ,pn) is any configuration in Ed, an
affine image is given by q = (q1, . . . ,qn), where qi = Api + b.
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If the configuration p is in equilibrium with respect to the stress ω, then
so is any affine transformation q of p, as is seen by the following calculation:∑

j

ωij(qj − qi) =
∑

j

ωij(Apj + b− Api − b) = A
∑

j

ωij(pj − pi) = 0.

So our stress-energy functional Eω can’t “see” affine transformations, at least
at critical points. Of course we know that when something is globally rigid,
it cannot exclude rigid congruences, but the group of affine transformations
are more than we would like. Notice that even projections, which are singu-
lar affine transformations, also preserve equilibrium configurations. Indeed,
the equilibrium formula (4) is true if and only if it is true for each coordi-
nate, which is the same as being true for orthogonal projections onto each
coordinate axis.

This brings us to the question, for a tensegrity G(p) in Ed, when is there
an affine transformation that preserves the member constraints (1)? It is
clear that the matrix A is the only relevant part. For us, it will turn out that
we also only need to consider when the members are bars. If {i, j} is a bar
of G, then the matrix A determines a transformation that preserves that bar
length if and only if the following holds:

(pi − pj)
2 = (qi − qj)

2

= (Api − Apj)
2

= [A(pi − pj)]
T A(pi − pj)

= (pi − pj)
T AT A(pi − pj),

or equivalently,
(pi − pj)

T (AT A− Id)(pi − pj) = 0 (5)

where ()T is the transpose operation, Id is the d-by-d identity matrix, and
vectors are regarded as column vectors in this calculation. If Equation (5)
holds for all bars in G(p), we say it has a bar preserving affine image, which
is non-trival if A is not orthogonal. Similarly, G(p) has a non-trivial affine
flex if there is a continuous family of d-by-d matrices At, where A0 = Id, for
t in some interval containing 0 such that each At satisfies Equation (5) for t
in the interval.

This suggests the following definition. If v = {v1, . . . ,vk} is a collection
of vectors in Ed, we say that they lie on a quadric at infinity if there is a
non-zero symmetric d-by-d matrix Q such that for all vi ∈ v

vT
i Qvi = 0. (6)
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The reason for this terminology is that real projective space RPd−1 can be
regarded as the set of lines through the origin in Ed, and equation (6) is the
definition of a quadric in RPd−1.

Notice that since the definition of an orthogonal matrix A is that AT A−
Id = 0, the affine transformation defines a quadric at infinity if and only if
the affine transformation is not a congruence.

Call the bar directions of a bar tensegrity the set {pi−pj}, for {i, j} a bar
of G. With this terminology, Equation (6) says that if the member directions
of a bar tensegrity under an affine transformation A satisfy (5), they lie on
a quadric at infinity. Conversely suppose that the member directions of a
bar tensegrity G(p) lie on a quadric at infinity in Ed given by a non-zero
symmetric matrix Q. By the spectral theorem for symmetric matrices, we
know that there is an orthogonal d-by-d matrix X = (XT )−1 such that:

XT QX =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λd

 .

Let λ− be the smallest λi, and let λ+ be the largest λi. Note ∞ ≤ 1/λ− <
1/λ+ ≤ ∞, λ− is non-positive, and λ+ is non-negative when Q defines a non-
empty quadric and when 1/λ− ≤ t ≤ 1/λ+, 1 − tλi ≥ 0 for all i = 1, . . . , d.
Working Equation (5) backwards for 1/λ− ≤ t ≤ 1/λ+ we define:

At = XT



√
1− tλ1 0 0 · · · 0

0
√

1− tλ2 0 · · · 0
0 0

√
1− tλ3 · · · 0

...
...

...
. . .

...
0 0 0 · · ·

√
1− tλd

 X. (7)

Substituting At from Equation (7) into Equation (5), we see that it provides
a non-trivial affine flex of G(p). If the configuration is contained in a lower
dimensional hyperplane, we should really restrict to that hyperplane since
there are non-orthogonal affine transformations that are rigid when restricted
to the configuration itself. We have shown the following:

Proposition 5. If G(p) is a bar framework in Ed, such that the nodes do not
lie in a (d−1)-dimensional hyperplane, then it has a non-trivial bar preserving
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affine image if and only if it has a non-trivial bar preserving affine flex if and
only if the bar directions lie on a quadric at infinity.

Proposition 5 can be used to strengthen Theorem 3 by replacing Condi-
tion (3. with the condition that the stressed member directions do not lie on
a quadric at infinity.

5 Generic global rigidity

It turns out that the problem of determining even when a bar framework
is globally rigid is equivalent to a long list of problems known to be hard.
See [22] for example. The problem of whether a cyclic chain of edges in the
line has another realization with the same bar lengths, is equivalent to the
uniqueness of a solution of the knapsack problem. This is one of the many
problems on the list of NP complete problems.

One way to avoid this difficulty, is to assume that the configuration’s
coordinates are generic. This means that the coordinates of p in Ed are alge-
braically independent over the rational numbers, which means that there is no
non-zero polynomial with rational coordinates satisfied by the coordinates of
p. This implies, among other things, that no d+2 nodes lie in a hyperplane,
for example, and a lot more. In [6] I proved the following:

Theorem 6. If p = (p1, . . . ,pn) in Ed is generic and G(p) is a rigid bar
tensegrity in Ed with a non-zero stress matrix Ω of rank n−d−1, then G(p)
is globally rigid in Ed.

Notice that the hypothesis includes Conditions 2.) and 3.) of Theorem
3. The idea of the proof is to show that since the configuration p is generic,
if G(q) has the same bar lengths as G(p), then they should have the same
stresses. Then Proposition 1 applies.

Then recently in [11] S. Gortler, A. Healy, and D. Thurston proved the
converse of Theorem 6 as follows:

Theorem 7. If p = (p1, . . . ,pn) in Ed is generic and G(p) is a globally
rigid bar tensegrity in Ed, then either G(p) is a bar simplex or there is stress
matrix Ω for G(p) with rank n− d− 1.

The idea here, very roughly, is to show that a map from an appropriate
quotient of an appropriate portion of the space of all configurations has even
topological degree when mapped into the space of edge lengths.
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As pointed out in [11], using these results it is possible to find a polynomial
time numerical (probablistic) algorithm that calculates whether a given graph
is generically globally rigid in Ed, and that the property of being globally rigid
is a generic property. In other words, if G(p) is globally rigid in Ed at one
generic configuration p, it is globally rigid at all generic configurations.

Interestingly, it is also shown in [11] that if p is generic in Ed, and G(q)
has the same bar lengths in G(p) in Ed, then G(p) can be flexed to G(q) in
Ed+1.

A bar graph G is defined to be generically redundantly rigid in Ed if
G(p) is rigid at a generic configuration p, and it remains rigid after the
removal of any bar. A graph is vertex k-connected if it takes the removal of
at least k vertices to disconnect the rest of the vertices of G. The following
theorem of Hendrickson [13], provides two necessary conditions for generic
global rigidity.

Theorem 8. If p is a generic configuration in Ed, and the bar tensegrity
G(p) is globally rigid in Ed, then

a.) G is vertex (d + 1)-connected, and

b.) G(p) is redundantly rigid in Ed.

Condition a.) on vertex connectivity is clear since otherwise it is possible
to reflect one component of G about the hyperplane determined by some d or
fewer vertices. Condition b.) on redundant rigidity is natural since if, after a
bar {pi,pj} is removed, G(p) is flexible, one watches as the distance between
pi and pj changes during the flex, and waits until the distance comes back
to it original length. If p is generic to start with, the new configuration will
be not congruent to the original configuration.

Hendrickson conjectured that Conditions a.) and b.) were also sufficient
for generic global rigidity, but it turns out in [5] that the complete bipartite
graph K5,5 in E3 is a counterexample.

The following is an application of some combinatorial results mentioned
here that can by used to get specific geometric results about global rigidity.
This was suggested by Konstatine Rybnikov.

Proposition 9. Let G(p) be a strictly convex triangulated sphere in E3, not
a simplex. Then there is another configuration q in E3 such that G(q) has
the same edge lengths as G(p).
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Proof. By Theorem 7 or Theorem 8 if p is generic in E3, then such a config-
uration q exists in E3 since the only equilibrium stress is 0. If p is not generic,
there is a sequence of generic strictly convex triangulations converging to p
and other corresponding configurations necessarily not convex. By pinning
a vertex of p, say, we can essentially restrict our space of triangulations to
a compact subset of the configuration space. So there is a limiting configu-
ration that is outside the space of strictly convex realizations (by Cauchy’s
Theorem or Dehn’s Theorem about convex polyhedra) that has the same
edge lengths as G(p).

6 Dimensional rigidity

For a given bar framework G(p) in Ed Alfakih in [2] defines it to be dimension-
ally rigid if any other framework G(q) in EN for N ≥ d with corresponding
bar lengths the same, the configuration q lies in a d-dimensional affine sub-
space of EN . So if G(p) is super stable in Ed, for example, it is dimensionally
rigid in Ed. The following is in [2]. The proof below is direct in the sense that
it gives the flex in Ed if the framework is not rigid, but still dimensionally
rigid.

Theorem 10. If a bar framework G(p) is rigid in Ed and dimensionally
rigid in Ed, then it is uniformally globally rigid. That is G(p) is globally
rigid in EN for all N ≥ d.

Proof. Let G(q) be in EN for N ≥ d with corresponding bar lengths the
same as G(p). In Ed × EN = Ed+N place the configuration p in Ed × 0,
and place the configuration q in 0 × EN . For 0 ≤ t ≤ 1 consider pi(t) =
(cos(πt/2)pi, sin(πt/2)qi) in Ed × EN for each node i of G. So p(0) is p ×
0, and p(1) is 0 × q. It is easy to check that for each bar {i, j} of G,
|pi(t) − pj(t)| is constant for 0 ≤ t ≤ 1. In other words, the corresponding
bar lengths of G(p(t)) are the same as G(p), and thus by the dimensional
rigidity assumption, each G(p(t)) lies in a d-dimensional affine subspace of
EN+d for 0 ≤ t ≤ 1. One can regard the affine subspace as fixed and G(p(t))
lying in it. Then the rigidity hypothesis implies that all the p(t) for 0 ≤ t ≤ 1
are congruent to p(0) and p. In particular p(1) and q are congruent to p,
as desired.

This can be generalized further, and in order to do this we consider some
ways of understanding affine maps. Consider a function f : X → Y . The
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graph of f is Γ(f) = {(x, y) ∈ X × Y | f(x) = y}.

Lemma 11. For any set X ⊂ Ed, a function f : X → EN , extends to an
affine map f̂ : Ed → EN if and only if Γ(f) is contained in a d-dimensional
affine subspace of Ed × EN = Ed+N .

Proof. Without loss of generality we assume that the affine span of X
is all of Ed. If f̂ is an affine map extending f , then Γ(f̂) ⊂ Ed+N is the
d-dimensional subspace that is required. Conversely, if L is a d-dimensional
affine subspace of Ed+N containing Γ(f), its projection to Ed is an affine linear
isomorphism. So the inverse of this projection followed by the projection into
EN is the required extension f̂ .

The following is also in [2], but stated a bit differently.

Theorem 12. If a framework G(p) in Ed is dimensionally rigid and every
affine image in Ed is a congruence, then G(p) is universally globally rigid.

Proof. Without loss of generality we assume that the affine span of p is all of
Ed. Let G(q) be in EN for N ≥ d with corresponding bar lengths the same as
G(p), and consider the same flex pi(t) = (cos(πt/2)pi, sin(πt/2)qi) in Ed×EN

for each node i of G, as in the proof of Theorem 10. By dimensional rigidity
pi(

1
2
) =

√
2

2
(pi,qi), for each node i of G, is contained in a d-dimensional affine

linear subspace of Ed+N . So (pi,qi) is also contained in a d-dimensional linear
subspace of Ed+N . By Lemma 11, the configuration q is an affine image of
p. Thus q is congruent to p.

Using Propostion 5 we can test whether any bar framework G(p) in Ed

has an affine image that is not a congruence. We determine whether the bar
directions lie on a quadric at infinity, which is simply a question of whether
a set of linear equations has a non-zero solution.

Figure 4 is an example of a bar framework G(p) in E2 that is dimensionally
rigid but is a finite mechanism (necessarily in the plane). Note that there
are exactly 2 bar directions, and thus lie on a quadric (two points) on the
projective line at infinity. The affine flex is clear.

Each horizontal bar starting from p1 and p2 in Figure 4 is designated by
t1p

′
1, t2p

′
1, t1p

′
2, and t2p

′
2, where t1 and t2 are non-zero distinct real numbers.

So the vertical bar constraints are that |p1 − p2| = |p1 + tp′1 − (p2 + tp′2)|
for t = 0, t1, t2. Squaring both sides canceling and dividing by t we get the
linear equation −2(p1 − p2) · (p′1 − p′2) + (p′1 − p′2)

2t = 0 for t = t1 and
t = t2. Thus the linear equation has all 0 coefficients, and p′1 = p′2. Thus
the configuration is planar, and thus it dimensionally rigid but not rigid.
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Figure 4: This bar framework has 6 nodes and 9 bars. The long horizontal
bars are all parallel and are slightly curved to show their existence.

In [1] there is another version of Theorem 12 where it is assumed that
the configuration is generic in Ed instead of directly assuming that it has no
non-congruent affine flex. This depends on the following result in [6].

Theorem 13. Suppose that G(p) is framework in Ed such that each vertex of
G has degree at least d, and the configuration p is generic. Then the member
directions of G(p) do not lie on a quadric at infinity.

With this the following result in [1] is immediate.

Theorem 14. Suppose that G(p) is framework in Ed such that the configura-
tion p is generic, the number of nodes n ≥ d + 2, and G(p) is dimensionally
rigid in Ed. Then G(p) is uniformally globally rigid.

Proof. If any vertex pi has degree less than d, since the configuration
is generic, the d + 1 other vertices have a d-dimensional affine span. Then
rotating pi into Ed+1 creates anotheer configuration, whose affine span is
(d + 1)-dimensional with the same member lengths. If no vertex has degree
less than d, then Theorem 13 applies with Theorem 12 applies to show that
G(p) is universally globally rigid.

The results in this section follow the same general outline of those in [2]
and [1], but they instead rely on using the Gale diagram associated to a
stress, which was not used here.

A configuration p in Ed is in general position if for k ≤ d + 1, the affine
span of every subset of k points is (k − 1)-dimensional. If a configuration p
is generic, it is automatically in general position, but necessarily conversely.
The next question asks whether we can get away with general position instead
of generic in Theorem 14.
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Question 2. When the dimension d ≥ 3, can the hypothesis that p is generic
in Theorem 14 be replaced with p is in general position, with the same con-
clusion?

The answer would be yes, if for a graph in general position such that the
degree of each vertex is at least d is such that the member directions do not
lie on a quadric at infinity. In the plane, the only connected framework, with
each vertex of degree greater than or equal to 2 with the configuration in
general position, is a single cycle, with each bar alternately lying in one and
then the other direction, as in Figure 5.

Figure 5: Each vertex is of degree 2, and each bar is parallel to one of two
directions, which is a conic in the real projective line, while this configuration
is in general position.

7 Infinitesimal rigidity

Before the discussion of the situation in the plane, it is helpful to recall some
of the basic facts with regard to infinitesimal rigidity. Given a configuration
p in Ed, the rigidity matrix is defined as m-by-dn matrix

R(p) =

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 pi − pj 0 · · · 0 pj − pi 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

 ,

where the entries in the d columns corresponding to node i and node j and
row {i, j} have pi − pj and pj − pi respectively (regarded as row vectors).
All other entries are 0. The rows correspond to the m members of G. We
say that a bar framework G(p) with n nodes is infinitesimally rigid in Ed if
it is either a simplex (where the configuration consists of k ≤ d + 1 affine
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independent points, and G is the complete graph with all nodes connected
by a bar) or R(p) has rank n− d(d + 1)/2, which turns out is maximal. The
following is a basic result which is explained in [8].

Theorem 15. If G(p) is infinitesimally rigid in Ed, then it is rigid in Ed.

An easy calculation shows that a stress ω, regarded as a row vector, for a
graph G is an equilibrium stress for G(p) if and only if ωR(p) = 0. In other
words the equilibrium stresses for G(p) are the co-kernel of the rigidity matrix
R(p). So equivalently, G(p) is infinitesimally rigid in Ed if the dimension of
the space of equilibrium stresses for G(p) is m − dn + d(d + 1)/2. It is
useful to note that if G(p) is infinitesimally rigid in Ed, then the rank of R(p)
is constant in an open neighborhood of the configuration p in Edn, and as
p varies continuously in this neighborhood, the vector space of equilibrium
stresses also varies continuously. So if a particular equilibrium stress ω is
chosen for G(p), an extension of ω can be chosen to vary continuously as
well. In particular, the eigenvalues of the corresponding stress matrix for Ω
will also vary continuously.

With these remarks, we get the following corollary of Theorem 3.

Corollary 16. If a tensegrity G(p) has a proper equilibrium stress, such that
it is super stable and infinitesimally rigid as a bar graph, then G is generically
globally rigid in Ed.

8 Edge splitting

In constructing globally rigid tensegrities, it is helpful to have operations that
preserve global rigidity. One such is edge splitting, also called a Henneberg
move, which is explained next, although it starts out restricting to only bar
frameworks.

Start with an infinitesimally rigid bar framework G(p) in Ed, a bar {i, j}
of G, and d − 1 nodes p1, . . . ,pd−1 such that the lines through pi and pj

and p1, . . . ,pd−1 are affine independent. Choose a new node p0 on the line
through pi and pj but not equal to pi or pj. Create a new bar graph G1 by
adding one extra node 0, deleting the bar {i, j} and defining new bars {i, 0},
{0, j}, and {0, 1}, {0, 2}, . . . , {0, d− 1}. Figure 6 shows this in the plane.

The following is a consequence of Theorem 6 and Theorem 7.
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Figure 6: The bar framework G(p) is split along the bar {i, j} to get the
framework G1(p).

Theorem 17. If a bar graph G is generically globally rigid in Ed, then so is
G1, which is obtained by splitting an edge of G.

Proof. Let p be a generic configuration in Ed. Then G(p) is infinitesimally
rigid. And as described above, G1(p̂) is also infinitesimally rigid in Ed as well,
where p̂ is the configuration p with the added nodes. This is easy to see by
seeing that the dimension of the stress space for G(p) and G1(p̂) is the same
since the number of members has increased by d and the number of nodes
has increased by 1. The stress on the members {0, 1}, {0, 2}, . . . , {0, d− 1}
is zero. So G1(p̂) is infinitesimally rigid.

By Theorem 7, there is an (equilibrium) stress ω for G(p) with a stress
matrix Ω that has rank n − d − 1. The stress ω̂ for G1(p̂) is the same as ω
except that the stress ωij is replaced with the two stresses ωi0 = ±ωij|pi −
pj|/|pi − p0| and ωj0 = ±ωij|pi − pj|/|pj − p0|, where the sign depends on
which part of the line through pi and pj that p0 is chosen. So in any universal
configuration pi, pj and p0 are collinear. Thus the affine span of any such
configuration for p̂ would be the same as one for p. Thus the dimension of
kernel of the stress matrix Ω̂ for ω̂ is the same dimension as the kernel for
Ω. By the remarks at the end of Section 7, the rank of Ω̂ and the rank of
the rigidity matrix R(p̂) are unchanged by a small perturbation to a generic
configuration. Thus G1 is generically globally rigid in Ed.

I conjectured the following result of Bill Jackson and Tibor Jordán [15].
See also [3] for an earlier version when the graph is minimally redundantly
rigid.

Theorem 18. If G is vertex 3-connected and generically redundantly rigid
bar graph in E2 (conditions a.) and b.) of Theorem 8), then starting with the
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complete graph K4, one can find a sequence of graphs K4, G1, . . . , G, where
each graph is obtained from the preceding one by an edge split or the insertion
of an additional edge.

Theorem 18 is a purely combinatorial result, but we obtain Hendrickson’s
conjecture in the plane by applying Theorem 17.

Corollary 19. If G is vertex 3-connected and generically redundantly rigid
bar graph in E2, then it is generically globally rigid in E2.

9 Combinatorial versus geometric rigidity

The results of Theorem 18 and Corollary 19 are very nice, but there are
some annoying aspects of such a purely combinatorial result. For a bar
framework or tensegrity G, it is possible to find a configuration p and by
calculating the rank of the rigidity matrix R(p) explicitly determine that
G(p) is (infinitesimally) rigid in Ed. Also there are classes of geometric
configurations, such as triangulated strictly convex polyhedra in E3 (see [14],
and [23] for not quite convex polyhedra) or pointed pseudo-triangulations in
the plane (see [21]) that can be determined to be infinitesimally rigid.

For global rigidity, it is possible to choose a configuration p such that
G(p) is infinitesimally rigid in Ed and have an equilibrium stress with a
stress matrix of maximal rank. But this does not mean that G(p) itself is
necessarily globally rigid in Ed. For example, the bar framework of Figure
(1a) has both matrices of maximal rank, but it is not globally rigid in the
plane. See [9] for all kinds of examples along these lines along with a proof
that coning in one higher dimension preserves generic global rigidity.

In order to describe specific configurations that are known to be globally
rigid, we look more carefully at the proof of Theorem 17. We look at the
sign of the stress of the edge that is being split and the way that the splitting
node is chosen. Four possibilities are indicated in Figure 7 using the notation
of Theorem 17 and Figure 6.

There are four other possibilities, also, where the roles of cables and
struts have been reversed, but we wish to concentrate on the ones indicated
by Figure 7.

Theorem 17 effectively says that when the additional node is added in the
edge splitting operation, then an additional non-zero eigenvalue is created for
the new tensegrity. It is possible to control the sign of the new eigenvalue.
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Figure 7: In all cases {i, j} is the member being split. In cases (a) and (b)
{i, j} is a cable (i.e. ωij > 0), and in cases (c) and (d) {i, j} is a strut
(i.e. ωij < 0). The signs on the stresses after the splitting operation and
perturbation are determined by the geometry. When p0 is not in the interval
from pi to pj, it does not matter which side it is on.

A simple three-node tensegrity is when pi,p0,pj are order on a line, and it
has an equilibrium stress where ωij < 0, while ωi0 > 0 and ωj0 > 0. In other
words, {i, j} is a strut and {i, 0} and {0, j} are cables. The stress matrix
for this tensegrity is easily seen to be positive semi-definite with one positive
eigenvlaue and two zero eigenvalues. So in the edge splitting operation,
before the perturbation, one can choose the insertion of p0 and the two new
members {i, 0} and {0, j} replacing the previous {i, j} as the addition of this
small stress matrix the the original stress matrix in such a way that the cable
stress say on {i, j} cancels with the strut stress on the three node tensegrity.
The effect is that the new eigenvalue will be positive, while the others will
only be perturbed slightly. The same argument works when {i, j} is a strut
and p0 is on the line through pi and pj, but not in the interval. In both
cases we have the option of perturbing p0 in two of the cases of Figure 7.

Theorem 20. If G is vertex 3-connected and generically redundantly rigid
as a bar graph in E2, then there is a configuration p and a stress ω such that
as tensegrity framework G(p) is super stable.

Proof. Start with the tensegrity of Figure 2, and apply the sequence of edge
splittings by Jackson and Jordán as in Theorem 18. At each time use one of
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the possibilities of Figure 7. The tensegrity of Figure 2 is super stable, and
conditions 2.) and 3.) of Theorem 3 are automatically preserved, and the
argument above implies that 1.), the positive semi-definiteness, is preserved,
also. So super stability is preserved.

Note that if we insist that we only use options (a) and (d) of Figure 7, we
can insure that the final super stable tensegrity has only two struts. Figure
(3b) is an example. In that case we can make a more general statement.

First we need a Lemma.

Lemma 21. Let G(p) be tensegrity in the plane with n nodes, exactly two
non-collinear struts and a proper equilibrium stress ω, non-zero on each mem-
ber. Then the associated stress matrix Ω has maximal rank n − 3. In other
words, p is universal with respect to ω.

Proof. Consider the universal configuration p̂ for the equilibrium stress ω.
If the affine span of the nodes of p̂ are 3-dimensional (or higher), it is possible
to find a plane that separates the two struts. Then by pushing toward to
the plane we see that p̂ cannot be in equilibrium. Thus p is a universal
configuration.

Theorem 22. Let G(p) be tensegrity in the plane with n nodes, exactly two
non-collinear struts, a proper equilibrium stress ω, non-zero on each member,
and some cable not parallel to either strut. Then G(p) is super stable.

Proof. Construct another tensegrity G0(p) on the same vertices p, with
possibly more cables, but such that it has a proper equilibrium stress with
stress matrix Ω0 such that p is universal with respect to Ω0. This can be
obtained by adding positive semi-definite stresses of maximal rank defined on
the two struts and one additional interior node. Figure 8 shows this. So Ω0 is

Figure 8: This is a super stable tensegrity with 5 nodes and 2 struts.
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positive semi-definite with exactly 3 zero eigenvectors. For 0 ≤ t ≤ 1 define
Ωt = (1 − t)Ω0 + tΩ. So Ω1 = Ω, and by Lemma 21, each Ωt for 0 ≤ t ≤ 1
has exactly 3 zero eigenvectors. Since the eigenvalues vary continuously with
t the non-zero eigenvalues must remain positive. The condition on the cable
directions insure that Condition 3.) for super stability holds.

The analysis here is similar to what is done in [18], but that paper is
not concerned with the global rigidity of tensegrities, only the infinitesimal
rigidity. Figure 7 and Figure 2 in [18] are very similar, except (C) and (D) in
their Figure 2 create a negative eigenvalue for the associated stress matrix.

It would be interesting to be more explicit as to what the two struts
are. The proof of Theorem 22 chooses the struts depending on the edge-
splitting sequence of Jackson-Jordán in Theorem 18. But, nevertheless, it
is not possible to choose the two disjoint struts at will. For example, if the
struts as chosen as in (Figure 9a), there is no realization in E2, whose affine
span is 2-dimensional and is in equilibrium with a strict proper stress, since
there is no position for p5 in (Figure 9b). This the same as Figure (14G) in
[18]. See also [20] for an analysis of the sign patterns of rigid tensegrities.

b)a)
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4 3

21

Figure 9: Figure a) represents an abstract choice of struts and cables for a
tensegrity, and Figure b) shows that since the two struts must cross when
there is an equilibrium stress, there is no choice for the position of p5.

Question 3. Let G be a vertex 3-connected and generically redundantly rigid
bar graph in E2, is there a reasonable characterization of which choices of a
and b as two disjoint struts will yield a strict proper equilibrium stress as in
Theorem 22?
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10 Special tensegrities

10.1 Strut triangles

If three nodes are pinned in the plane, and positive stresses ω are chosen for a
graph G, then there is a unique configuration p such that p is in equilibrium
with respect to ω, except for the pinned points. But then it is possible to place
struts between each pair of pinned vertices and assign negative stresses on
those struts such that the whole tensegrity is in equilibrium. This is a version
of Tutte’s paper “How to draw a graph” in [24] and the “spider webs” of [4].
If each node is connected to all three originally pinned nodes, the resulting
stress matrix will be positive semi-definite, maximal rank, and rigid. Thus
it will be super stable. Note that G does not have to be infinitesimally rigid
in the plane, as in Figure 10. But if G is generically redundantly rigid, there
is the following question, which is similar to Question 3.

Figure 10: A super stable non-infinitesimally rigid tensegrity. The two tri-
angles in the center have an infinitesimal rotational motion about a point
inside.

Question 4. Let G be a vertex 3-connected and generically redundantly rigid
bar graph in E2, and let a, b and c three edges forming a triangle. Is it
possible to arrange it so that a, b and c are the only struts after the edge
splitting operations of Theorem 22?

For example, can we start with a triangle and one vertex inside, and only
perform the edge-splitting such that the edges of the original triangle are
never split? If G has a configuration as a tensegrity that is infinitesimally
rigid, it is not necessarily true that all the super stable configurations with
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positive stresses inside the triangle are infinitesimally rigid, as with Figure
10. But for this graph there are infinitesimally rigid configurations, which
can be found by using edge splittings on the interior edges.

Tibor Jordan has kindly pointed out that when the graph G is a 3-
connected generic rigidity circuit, i.e. m = 2n− 2, where n is the number of
nodes and m is the number of members, and G is a 3-connected generically
redundantly rigid graph, then Theorem 4 in [3] implies that the answer to
Question 4 is affirmative. This is because their Theorem 4 says that any
3-connected generic rigidity circuit, with n ≥ 5, has at least 2 disconnected
vertices of degree 3, where the inverse operation of deleting the vertex along
with its incident edges and joining some pair of the incident vertices by a
bar, can be performed. So any given triangle can be avoided, when the edge
splitting operation is performed.

10.2 Strut Hamiltonian cycles

There are other geometric classes of super stable tensegrities. In [4] it is
shown that any cable polygon in the plane with struts as diagonals, such
that it has a proper equilibrium stress, is super stable. This might suggest
that if a graph G is vertex 3-connected, generically redundantly rigid in the
plane, and has a Hamiltonian cycle, then it can be obtained by starting with
Figure 2, and perform only operations of type (b) in Figure 7. But this is
not always possible as seen in Figure 11.

Figure 11: The underlying bar graph of this tensegrity is vertex 3-connected
and redundantly rigid in the plane. But it is not possible to achieve this
configuration by operations of type (b) in Figure 7 since the four nodes of
degree three prevent it.
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On the other hand, I believe that the following is true, possibly by using
energy techniques:

Conjecture 1. If G is a vertex 3-connected graph with a Hamiltonian cycle,
then there is a configuration p in the plane, with the edges of the Hamiltonian
cycle as cables, all other members struts, and a proper equilibrium stress.

Note that this does not assume that G is generically redundantly rigid in
the plane. Figure 12 shows this sort of example. This example is globally
rigid, but not at a generic configuration.

Figure 12: A configuration with a stress that makes the tensegrity universally
globally rigid, but it is not generically globally rigid in the plane, even as a
bar framework.

In the spirit of looking for configurations for tensegrities that have strong
rigidity proproperties, it is interesting to note that Roth polygons, Cauchy
polygons and others (as shown in Figure 13) and defined in [4]) have the
property that they are always superstable and infinitesimally rigid for convex
configurations.

Question 5. What are some other examples of tensegrity polygons with only
cables on the edges with all the other members struts, where the tensegrities
are superstable and infinitesimally rigid in the plane?

10.3 Higher dimensional tensegrities

The Tutte realization of a graph with a simplex as a subgraph is still possible.
And for such configurations the stresses on the internal cables can be chosen
at will. Unfortunately, for higher dimensions, we cannot always expect the
Tutte/spider web realization to be infinitesimally rigid. This is a result in
[10]
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Figure 13: A Roth polygon and a Cauchy polygon. The Roth polygon is a
convex cable polygon, there two nodes that are connected by daigonal struts
to all the other nodes. For a Cauchy polygon each node is connected by
a strut to two nodes two steps away, except for two adjacent struts in the
sequence.

Theorem 23. There is a graph G that is vertex (d+1)-connected, generically
redundantly rigid in Ed, for d ≥ 5 and has a d-simplex (i.e. Kd+1) as a
subgraph, but it is not generically globally rigid?

Note that since G is generically globally rigid as a bar framework in Ed if
there were an infinitesimally rigid realization in Ed it would be automatically
super stable and generically globally rigid. But since it is not generically
globally rigid, it cannot have been infinitesimally rigid in its spider web
realization.

In E3, the only vertex 4-connected, generically redundantly rigid graph
in E3 that is not generically globally rigid, that I know of, is the complete
bipartite graph K5,5, and it does not contain any 3-simplex, i.e. K4 as a
subgraph.

Note that by gluing graphs along the simplex, we get the following.

Corollary 24. For d ≥ 5 are there an infinite number of isomorphism classes
of graphs G that are vertex (d + 1)-connected, generically redundantly rigid
in Ed but not generically globally rigid in Ed?

11 Vertex splitting

A very useful operation that was described by Walter Whiteley in [27] takes
a graph that is generically rigid and adds one new vertex with appropri-
ate rearranging and the addition of new edges to get a new generically
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rigid bar framework in Ed. This is described next for a graph G, with
vertices labeled (1, 2, . . . , n). We will split the vertex labeled 1. Assume
that {1, 2}, {1, 3}, . . . , {1, d} and {1, d + 1}, . . . , {1, d + k1}, and {1, d + k1 +
1}, . . . , {1, d+k1 +k2} are all the edges adjacent to the vertex 1. Remove the
edges {1, d + 1}, . . . , {1, d + k1}, add a new vertex labeled 0, add the edges
{0, 1}, {0, 2}, {0, 3}, . . . , {0, d} and {0, d + 1}, . . . , {0, d + k1}. Call this new
graph the d-dimensional vertex split of G.

Another way of thinking of this is to remove the vertex 1 and its adjacent
edges, write its neighbors as the union of two sets A and B with exactly d−1
vertices in A ∩ B, and join 0 to A and 1 to B. Note that k1 or k2 can be
0. Note also that one new vertex is added, and a total of d additional edges
added.
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Figure 14: This shows the vertex-splitting operation for d = 3, k1 = 3, and
k2 = 2.

The point of this operation is the following in [27].

Theorem 25. If a graph G is generically rigid in Ed, then so is G1 obtained
from G by the d-dimensional splitting of any vertex.

The following was conjectured by Walter Whiteley.

Conjecture 2. If a graph G is generically globally rigid in Ed, then so is G1

obtained from G by the d-dimensional splitting of any vertex, where k1 ≥ 1
and k2 ≥ 1.
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Conjecture 2 has already been proved in the case d = 2 in [19] using
purely combinatorial methods. In order to understand the results here we
need to look at the analysis in [27].

Consider the rigidity matrix R(p1, . . . ,pn) for the bar graph G(p1, . . . ,pn),
where the vertex 1 is to be split as in the notation described earlier. We
would like to place p0 = p1, but the edge {0, 1} would have 0 length, and
this makes stress calculations awkward. But the rank of a rigidity matrix
is not changed by multiplying any row by a non-zero scalar. So we define
a matrix that would be the rigidity matrix for the graph G1 with p0 = p1,
except that for the row corresponding to the edge {0, 1}, instead of being the
0 row, the p1 − p0 and p0 − p1 entries are replaced by a non-zero vector d10

and d01 = −d10, respectively. Call this matrix R1(p0,p1, . . . ,pn), which is a
function of not just the vertices (p0,p1, . . . ,pn) but also d01, which we call
the residual direction.

Lemma 26. If the vectors (d01,p2−p1, . . . ,pd−p1) are independent (i.e. a
basis), then dimension of the co-kernel of R(p1, . . . ,pn) and R1(p0,p1, . . . ,pn)
are the same.

Proof. Let ω be any equilibrium stress for G(p1, . . . ,pn), and define

v0 =

d+k1∑
i=d+1

ω1i(pi − p1) and v1 =

d+k1+k2∑
i=d+k1+1

ω1i(pi − p1),

while the equilibrium condition at p1 implies that

v0 +
d∑

i=2

ω1i(pi − p1) + v1 = 0. (8)

Since (d01,p2 − p1, . . . ,pd − p1) is a basis for Ed, there are unique scalars
ω̂12, . . . , ω̂1d and ω01 such that

d∑
i=2

ω̂1i(pi − p1) + ω01d01 = −v1,

and similarly there are unique scalars ω̂02, . . . , ω̂0d and ω10 such that

d∑
i=2

ω̂0i(pi − p0) + ω10d10 = −v0.
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Adding these last two equations and using (8), we get

d∑
i=2

(ω̂1i + ω̂0i)(pi − p1) + (ω10 − ω01)d10 =
d∑

i=2

ω1i(pi − p1).

Thus ω̂1i + ω̂0i = ω1i for i = 2, . . . , d, and ω10 = ω01. Thus we have an
isomorphism from the co-kernel of equilibrium stresses of G(p1, . . . ,pn) to
the co-kernel of R1(p0,p1, . . . ,pn) where ωij is sent to ω̂ij when i or j is 1,
while ω01 is determined as above and the other stresses are not changed.

Let us call the ω01, as defined above, the bridging stress for G(p1, . . . ,pn)
for the choices for the vertex splitting giving G1.

One important observation is that the rank of R1(p0,p1, . . . ,pn) is not
changed if the rank of R(p1, . . . ,pn) is maximal and one perturbs p0 to
be different from p1, while (p0 − p1)/|p0 − p1| is close to d01/|d01|. Also,
similar to the situation with edge splitting, the space of stresses themselves
will vary continuously as p0 is moved nearby p1 making sure that p0− p1 is
not included in any linear combination of the d− 2 neighbors of the original
p1. For example, p0 could be restricted to lie in an appropriate open cone
centered at p1.

We can also get geometric information for super stable infinitesimally
rigid tensegrites.

Theorem 27. Suppose a tensegrity G(p1, . . . ,pn) is super stable at a generic
configuration (p1, . . . ,pn) in Ed, and G1 is obtained from G by d-dimensional
splitting of the vertex p1, where k1 ≥ 1 and k2 ≥ 1 and a bridging stress is
non-zero. Then there is generic choice for p0 such that G1(p0,p1, . . . ,pn) is
also super stable.

Figure 15 shows how Theorem 27 works. Figure (15a) is super stable and
is split at vertex 1. When p0 is chosen as in Figure (15b) it is super stable,
but in the case of Figure (15c) the stress matrix is not positive semi-definite
and the tensegrity is not globally rigid.

What is used here is that as p0 approaches p1, the stress ω01 goes to
infinity. The following Lemma concerning symmetric matrices and quadratic
forms helps.

Lemma 28. Let Ωt for 0 ≤ t < 1 be a one parameter family of symmetric
n-by-n matrices, where each entry is a continuous function of t. Let U⊕V be
a fixed orthogonal decomposition of Rn, where U and V are linear subspaces
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Figure 15: Tensegrity (a) is split at vertex 1 and in both cases (b) and (c)
the resulting stress matrix is of rank 2, the maximum. Although tensegrity
(c) is not globally rigid in the plane, as a bar framework it is globally rigid
in the plane.

of dimension n − 1 and 1, respectively. Assume that the quadratic form
Qt associated with Ωt, when restricted to U , converges to a finite quadratic
form Q1 as t → 1, and trace (Ωt) → ∞ as t → 1. Then the eigenvalues of
Ωt converge to the eigenvalues of Q1, with the exception of one eigenvalue
whose limit is ∞. (There is a similar statement for −∞ replacing ∞.)

Proof. It is clear that as t → 1, at least one of the eigenvalues of Ωt

go to ∞. Any eigenvector associated to that increasingly large eigenvalue,
must converge to a vector in V , since otherwise it would have a component
in U and Qt would not converge to Q1. Thus all the other eigenvectors must
converge to vectors in U .
Proof of Theorem 27. From Lemma 26 the rank of R(p1, . . . ,pn) and
R1(p0,p1, . . . ,pn) are the same and maximal since G(p1, . . . ,pn) is assumed
to have maximal rank. So when p0 is not equal to p1 the ordinary rigidity
matrix has maximal rank as well, and the space of equilibrium stresses varies
continuously as long as p0 stays in a cone centered at p1 mentioned above.
Choose a path so that p0 converges to p1 in this cone, and let Ωt as t → 1
be a continuous choice of a stress matrix for these configurations, so that
the entries Ωt each converge to corresponding entry of Ω, the n-by-n posi-
tive semi-definite stress matrix for G(p1, . . . ,pn) given by the super stability
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hypothesis. The following shows a portion of the stress matrix.

Ωt =


ω01 + finite −ω01 −ω02 · · · −ω0d · · ·
−ω01 ω01 + finite −ω12 · · · −ω1d · · ·

...
...

...
...

...
...

−ω0d −ω1d
...

...
...

...
...

...
...

...
...

...

 .

Define the following matrix n-by-(n− 1) matrix

X =


1 0 · · · 0
1 0 · · · 0
0 1 · · · 0

0 0
. . . 0

0 0 . . . 1

 .

Then XT ΩtX converges to the matrix Ω. So the eigenvalues of XT ΩtX
converge to the eigenvalues of Ω. Since we have assumed that bridging stress
is non-zero, the stress ω01 in Ωt must converge to ∞ as t → 1. By choosing
p0 on the appropriate side of the cone for taking the limit, we can be sure
that ω01 > 0. Then Lemma 28 applies and we find that for t close enough to
1, Ωt is positive semi-definite of maximal rank.

In the argument above for the proof of Theorem 27, if we only have control
over the rank of Ω, we can still recover a weakened form of Conjecture 2.

Theorem 29. Suppose a tensegrity G(p1, . . . ,pn) is globally rigid at a generic
configuration (p1, . . . ,pn) in Ed, and G1 is obtained from G by d-dimensional
splitting of the vertex p1, where k1 ≥ 1 and k2 ≥ 1 and at a generic con-
figuration the stress ω01 6= 0. Then there is generic choice for p0 such that
G1(p0,p1, . . . ,pn) is generically rigid.

Figure 16 shows one of the difficulties of Theorem 29 and Theorem 27.
As vertex 1 is split in the framework (16a), the new {0, 1} member in the
split framework (16b) has a 0 stress, and the dimension of the kernel of the
corresponding stress matrix increases by one. However, the framework in
Figure (16a) is not generically globally rigid in E3.
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Figure 16: A vertex splitting in dimension 3, with the labeling convention as
in Figure 14.

References

[1] Alfakih, A. Y.: On the Universal Rigidity of Generic Bar Frameworks,
(preprint).

[2] Alfakih, Abdo Y.: On dimensional rigidity of bar-and-joint frame-
works. Discrete Appl. Math. 155 (2007), no. 10, 1244–1253.

[3] A. Berg and T. Jordán: A proof of Connelly’s conjecture on 3-
connected circuits of the rigidity matroid. J. Combinatorial Theory Ser.
B., 88, 2003: pp 77–97.

[4] Robert Connelly Rigidity and energy, Invent. Math. 66 (1982), no.
1, 11–33.

[5] R. Connelly: On generic global rigidity, in Applied Geometry and
Discrete Mathematics, DIMACS Ser. Discrete Math, Theoret. Com-
put. Scie 4, AMS, 1991, pp 147–155.

[6] R. Connelly: Generic global rigidity, Discrete Comp. Geometry 33
(2005), pp 549–563.

[7] R. Connelly, T. Jordán and W. Whiteley: Generic global rigid-
ity of body bar frameworks, Preprint (2008)

32



[8] R. Connelly; W. Whiteley: Second-order rigidity and prestress
stability for tensegrity frameworks. SIAM J. Discrete Math. 9 (1996),
no. 3, 453–491.

[9] R. Connelly; W. Whiteley: Global Rigidity: The effect of coning,
(submitted).

[10] S. Frank; J. Jiang: The Rigidity of New Classes of Graphs,
arXiv:0909.2893.

[11] S. Gortler, A. Healy, and D. Thurston: Characterizing generic
global rigidity, arXiv:0710.0907v1. (2007)

[12] S. Gortler and D. Thurston: (private communication)

[13] B. Hendrickson: Conditions for unique graph realizations, SIAM J.
Comput 21 (1992), pp 65–84.

[14] Ivan Izmestiev; Jean-Marc Schlenker: On the infinitesimal rigid-
ity of polyhedra with vertices in convex position. arXiv:0711.1981

[15] B. Jackson, and T. Jordán: Connected rigidity matroids and
unique realization of graphs, J. Combinatorial Theory B 94 2005, pp 1–
29

[16] Bill Jackson; Tibor Jordán; Zoltán Szabadka: Globally linked
pairs of vertices in equivalent realizations of graphs. Discrete Comput.
Geom. 35 (2006), no. 3, 493–512.

[17] Bill Jackson; Tibor Jordán: A sufficient connectivity condition
for generic rigidity in the plane. Discrete Discrete Applied Mathematics
157 (2009) 1965-1968.

[18] Tibor Jordán; András Recski; Zoltán Szabadka: Rigidi
Tensegrity Labellings of Graphs, (preprint)

[19] T. Jordán; Z. Sabadka: Operations preserving the global rigidity of
graphs and frameworks in the plane, Computational Geometry, (2009),
doi:10:1016/j.comgeo.2008.09.007 jordan-recski-szabadka

33



[20] András Recski: Combinatorial conditions for the rigidity of tenseg-
rity frameworks. Horizons of combinatorics, 163–177, Bolyai Soc. Math.
Stud., 17, Springer, Berlin, 2008.

[21] R. Haas; D. Orden; G. Rote, F. Santos, B. Servatius, H. Ser-
vatius, D. Souvaine, I. Streinu, W. Whiteley: Planar minimally
rigid graphs and pseudo-triangulations. Comput. Geom. 31 (2005), no.
1-2, 31–61.

[22] James B. Saxe: Embeddability of weighted graphs in k-space is
strongly NP-hard. Technical report, Computer Science Department,
Carnegie Mellon University, 1979.

[23] Jean-Marc Schlenker: A rigidity criterion for non-convex polyhe-
dra. Discrete Comput. Geom. 33 (2005), no. 2, 207–221.

[24] W. T. Tutte: How to draw a graph, Proc. London Math. Soc. (3) 13
1963 743–767.

[25] Walter Whiteley: Infinitesimally rigid polyhedra. I. Statics of
frameworks. Trans. Amer. Math. Soc. 285 (1984), no. 2, 431–465.

[26] Walter Whiteley: Infinitesimally rigid polyhedra. II. Weaving lines
and tensegrity frameworks. Geom. Dedicata 30 (1989), no. 3, 255–279.

[27] Walter Whiteley: La division de sommet dans les charpentes iso-
statiques. [Vertex splitting in isostatic frameworks] Dual French-English
text. Structural Topology No. 16 (1990), 23–30.

[28] W. Whiteley: Matroids from discrete geometry, in Matroid The-
ory, J. E. Bonin, J. G. Oxley, and B. Servatius, Eds. American Math-
ematical Society, Contemporary Mathematics, 1996, vol. 197, pp 171–
313.

34


