Math 762 Homework Assignment, Due Thursday, May 3

- 1. Let $f: K \to \mathbb{E}^2$ be a singular, non-degerate, orientable, combinatorial 2-manifold, M, where K is an orientable, combinatorial 2-manifold and f is affine linear on each simplex of K. For each 2-simplex σ of K choose a vertex q_{σ} in \mathbb{E}^2 , such that if σ and τ share a common 1-simplex $\langle p_1, p_2 \rangle$, then $p_2 p_1$ is perpendicular to $q_{\sigma} q_{\tau}$. The configuration q, as above, with edges corresponding to the 1-simplices of K, when it exists, is called a reciprocal of M.
 - **a.** Show that the set of reciprocals for a fixed M has a natural linear structure as a vector space.
 - **b.** Show that there is a natural linear isomorphism from the space of reciprocals for M to the space of equilibrium stresses for the 1-skeleton of M. (Hint: The stress corresponding to the edge $\langle p_1, p_2 \rangle$ is $|q_{\sigma} q_{\tau}|/|p_2 p_1|$, using the notation from above, and with due regard to the orientation of M.)
 - c. Suppose that we have a packing of circles in the plane such as the one indicated in the Figure below. (The Figure is taken from a paper of Allan J. Wilks.) Show that the vertices of the centers of the circles are the vertices of a singular non-degenerate combinatorial 2-manifold M such as above, and that it has a reciprocal, and thus a non-zero equilibrium stress.