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Abstract: The problem of the rigidity of polyhedral surfaoes in %
three space is considered In particular, for a suspension it 1is

shown that, if the w1nding number of the equator about the axis

through the north and south poles (the suspension points) is non-

_ ZeYro,. then.the suspens1on is rlgld. This is also extended to the

case of a. suspen81on of a plecew1se smooth curve. | The formulae
developed here are also used in Part IT where, among other things, it
1§ shown that any embedded susoen81on is Tlgld. '

The method used 1s to derlve a formula that must be satlsfied
if the polyhedron flexes and then extend the domain of the varlables
used and evaluate at a,convenlent point to gain the information .

desired.: .
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§1, Introduction

Occasionally in mathematics a simple, elegant problem, once

stated, goes relatively unscathed for a long'period of time. S8uch

"is the case for the problem of the rigidity of polyhedral surfaces

in three space. After an initial success by Cauchy in 1813 there
have been only limited extensions aod oew ideas; yet it seems to
us that there is a great potential for important gpplications with
new techniques. We believe the problem's gnonimity is quite
undeserved. | '

We propose to present some new ideas and techniques that are
independent of Cauchy's and apply them to the special case of
suspensions. The techniques described here are very elementary and
in facﬁ there is 1little that could not have been done 150 years ago.
Practically nono of the machinery usually assooiated with differential
geometry is used, and possibly this might be an opportunity'to'develop
a parallel theory or somehow extend the old (modern) theory. At
this stage we believe the time is right for such developments

Our phllopophy for proving rigidity theorems differs somewhat

from the usual phllosophy in the smooth situation (see Stoker p. 360

‘L7]), where a certain ”potentlal“ function is needed to vanlsh In-

stead we write down a formula which describes the motion of the
polyhedron as it flexes, but we make no assumption about whether the
polyhedron is immersed or embedded (this generai situation seems
inherently difficult to describe in the smooth category). It turhs

out that the voriables used in the formula can be extended outside

of their normal domains, with the formula still valid. Then by evalua-

ting the formula at & convenient point we can gain both intrinsic and extrinsic
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information about the original polyhedron. 1In the special cases
we consider this is enough to show that the original polyhedron is
not immersed. Thus, if the polyhedron is immersed, it is rigid.

Out attack is in two parts. In Part I we define the basic
formulae and the variables and theory that go into them. The pri-
mary purpose 1s to prove (by:twé'methods) that if a suspension flexes
with the distance between'the north and south poles changing, then

the winding number of the equator about the line through the north

and south poles is zero. B | i

In Part IT we apply the formulae and technlques of Part I.
We aoply the basic formula to obtain certain extrinsic (and
4 intrinsic) information.. We then use this information to calculate
a certain generalized volﬁmp. It turns out that if the.polyhedron
flexes in a non-trivial wéy. then this volume is zero, showing,

that all embedded suspen51ons are rigid.

Next we go on to give a systematlc claSSlflcatlon of all flex1ble
octahedra. w1th exp11CLt techniques allowing one to construct them
(with a compass and straightedge say). The classiflcatlon, useful
for'any suspensibn, involves the classical non-singular cubic of
algebraic geometry and a flow graph constructed using the Weli known
group operation defined on the non-singular cubic. In partiéular;
this allows one to parametrize such flexible suspensions by means:of
the elliptic Wierstrass (© function. We hope such explicit con-
struction will ultimately’prove very usefﬁi.

The following is a table of contents fof Part I.

§2.BasicLDefinitions and Previous Results. Here we state two

versions of the rigidity conjecture.
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§%3. The Fundamental Relation - The variables and basic equations

are defined.

84, Suspensions of Polygons - This specializes to suspensiong and

proves the winding number theorem,

§5. Suspensions of Differentiable Curves - This 1s independent of

all the reét and the reader may skip it if he wishes. This provides
another proof (of a generalization to plecewise ¢t éurves) of the
winding number theorem, If one suspends Ol curves and does not
subdivide, rigidity comes'very easlly.

§6¢. Remarks and Comments - This contains a few deadends and hopeful

directions for future attack.
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Basic Definitions anhd Previous Results

Let K be a simplical complex. We shall slightly abuse some
standard notation (following Gluck [5]) and regard a polyhedfon ih
three-space as a map from K to RB, linear on each simplex of
K., If the vertices .of K are Viyseor s Vy and if P:K = RB
ig the polyhedron, then P is determined by the V points
pl,pg,.,m,pv, where P(vj) = pj. We also regard P as the collec-
tion of V-tuples Pqse.« Dy Throughout, K will be fixed.

If P and @ are two polyhedra then we say P and Q are
congruent iff there is & rigid motion of 'R3 '

o st kT e

V-tuple corresponding to P into the V-tuple corresponding to Q.

which takes the

We say P and Q are gggggggig iff each edge of. P has the same.
length as the corresponding edge of Q (i.e. if('vj,vk)> is a
l-gimplex of K then lpjmpkl =‘]qj~qk!, where we always use thé
standard euclidean norm, and Qq,... are the vertices of Q).

- Following Gluck we have the following ﬁwo equivalent definitions

of a rigid polyhedron:

Definition 1: P 4is rigid if there is an ¢ > 0 such that if another

polyhedron, Q, is within, e of P (as maps or simply at each vertex)

and isometric to P, then P and @ ‘are congruent.

Definition 2: P ig rigid if for any continuous one parameter family

of polyhedra, Pt,‘with 'PO =P, O é‘t énl (a homotopy) such that
each Pt is isometric to PO’ then each Pt is congruent to P.
Gluck shows that in fact these two definitions are equivalent. We
are now in a position to state 2 forme of the rigidity conjecture.

(originally stated by Euler [4], more or less).



ws£) we
STRONG RIGIDLITY CONJECTURE: Let the underlying space of K be
homeomorphic to a closed 2-manifold. Let P, a polyhedron, be an

immersion of XK. Then P is rigild.

WEAK RIGIDITY CONJECTURE: With X as above, let P be an embedding.
Then P is rigid. '

.Clearly, we have a conjecture for each homeomorphism class of
2-manifolds. \

The best resultsthat we know are the well known and beautiful
theorems of Cauchy, Dehn, [1] and [3], which state that if XK is
homeomorphic to a sphere and the polyhedron P is (strictly) convex
(no flat vertices), then P is rigid and in fact infinitesimally
rigid (see Gluck [5] for definitions and a, beautiful proof of this).

Also, for K & sphere, Gluck has shown that almost all poly-
hedra are rigid'(irregardless'of whether they are even immersed).

Both of th@se results are encouraging, but Cauchy's methods do
not seem to gencralize (see Stoker [8] for an exception) and Gluck's
methods (which use only elementary algebraic geometry) do not seem
to be able to distinguish embedded or immersed polyhedra from arbi-
trary maps, and there are copious and subtle examples of non-
immersed polyhedra which are not rigid, even for spheres.
| We have shown in an earlier paper‘[EJ thet if P 1is an lmmersed
orthogonal suspensiom,then P must be rigid. The methods used
there inspired some of the techniques in this paper, but,a priori,
they are independent.

Until now, as far as we know, there were no known examples,
other than triviél ones of tetrahedra stuck together, where a given
complex had all its:embedded polyhedra rigid. In Part IL we show

it for the simplest non-trivial example, the octahedron.
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$3. The Fundamental Relation

THE VECTOR EQUATION
Here we derive a relation which is extremely useful throughout.
. Let Al’AE’AB be three vectors in three-space, where Al and

A are not scalar multiples of A3 # 0. Let Ag-L denote the space

2
perpendicular to A3, and let w denote the orthogonal projection

onto A%lu Let 8 denote the angle from wAl to WAQ- We wish
to compute 6 in terms of the six quantitie? AjeAk, 1 3 kL 3.
Tn fact, it is most convenient to compute ele. If we regard 6 as

the dihedral angle between the plane determined by Al and A3 and

the plane determined by A, and . AB’ then it is casy to see that:

(A. xA3) (A ng3) ) (A4 Ag)(A3°A3)~(Al'A3)(AQ-AB)

cos & = =
|AqxA5] [ApxAs] (A xh, [ Tayx A
(sin e)mféﬂ _ (AyxAg)x(Aoxhg) ((AyxBg)-Bg)h,- ((Ale3)-AE)A3'
| |as] TA xAg[ A XAg] AL 3| LTy

- TE XABI]AexAgl ’

where“ [AlgAz,As] denotes the scalar triple product.

Thus,
(3.1) o _ (Byrhp)(hghg)-(Ay Ag) (Byhg) + [Agl[Ay,8,,A5]1
B XA ] lAqu31 s
where
"
' IAJ'XABI = (AJ <A )(A 3)"‘(AJ.A3)2 j=1,2,



and
na 812 = [det (Br,hushe)]? = det(Ay,A,,Aq)det (A Ay ,A4)"
[A1.8p083)7 = Ldet (A1,85.33 1780083 18oR3
t A i
= det(Aj'Ak). (" denotes transpose).
This provides the desired explicit expression for el® in terms

of the Aj-Ak-

Figure 1

DEFINITION OF A -CHAIN OF EDGES
With this diversionbehind us, let us now derive some formulae
that must be satisfied if a polyhedron, P, 1is to flex (not be rigid).
Let €17 eie""’eiE denote the edges of P, i.e. ej =:pk - by
Whére <vk,v£> is a l-simplex of K. ©Note that edges are directed
- s0 that -ey = e for some k. (We assume here j = -k for simplicity.)
We define € and e, to be EQQEEEEE iff the vertices of K corres-
ponding to ,ej and €. form a 2-simplex of K. So in particular

ey and e, have one common vertex and € toe = ey for some 4.

Let @ = {(3,k)} be a finite collection of ordered pairs of non-

zero integers 0< |jl, |x| < E. We say (b is a chain of edges iff

(i) Vi, J appears in the first position of the ordered pair
the same number of times that it appears in the second

position in a.
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(1) ¥(J,k) ¢ e, o050 O aﬁe adjacent.
|
o <
EXAMPLE ]
The most important'example of l chain of edges is the following:
Let the underlying space of K be ﬂomeomorphic to a two manifold,
‘and let v be a vertex of K. Then‘gach edge with v as a vertex

is‘adjacent to two others with v' as\a vertex (neglect the sign

.

here). Orient the neighborhood of Vf: Then define the chain of

edges CLV to be all the pairs (Jj,k) where e, 1s obtained from ey

be proceeding in a clockwise fashion around v, where both ej

and €y have v as a vertex.

Figure 2

THE VARIABLES AND THE FUNDAMENTAL EQUATION

To set up the basic equation corresponding to a polyhedron we
first choose an arbitrary vector R # 0. Later we define R 1in
terms of the polyhedron itself, but for the purposes of setting up
- tﬁe equations it is Jjust a reference vector.

Variables are defined as follows:

X = RR

3.2 z. = Ree,

(3.2) ; e,
Y5 = |R|[ej,ek,R]i (ej,ek usually adjacent here).
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In view of (3.1)

g3 J

(3.3) y2 - -x det| e re. e e =z
: 5k T T s Y
Zj Zye X

_Suppose(l,is a chain of edges. Let m be the orthogonal projection

onto the plane perpendicular to R. Then, if ﬁej_% 0 for all J,

define ejk to be the angle between Tme and me) - So

J

] 1050 T8y Iwekl

= Tres] = s Where the plane is regarded as the complex
J k

numbers. So, by (3.1)

10, R-R)e.-e -(R-e,) (R e )+|R|[e. i
(3-4) T R L ((R-R)e; ey gR eJ?(LRek)fl | Leyep - R
(3.%)el (3,%)eC - [Bxey [ TBxey ]
and using (3.2),
' 2
(3.5) 1 (X(e.wek)—-z.zk t Ya) = 1 (x(e. e;) - 25).
: (3,k)e@ 9 J % (5,k)e@ I J
Notice that there are also linear relations among the zj's
generéted by the linear relations among the ej's (eg.
every triangle, ej+ek = ey generates a relation zj+zr = ZL). Thus

we can regard isometric polyhedra as generating points on the variety
defined by (3.3), (3.5) and the linear relations. This is in con-
trast to the variety defined by the quadratic equations arising from
the distances.ffom adjacent vertices (being constant).

(3.5) is‘the crutical equation vital to the analysis to follow.
It seems»to capture the local information much more succinctly than

the quadratic equations.
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MORE VARIABLES
For future reference let us rewrite the factors in (3.4) as

(R-R)(e"-ek)m(R-ej)(Rfek) A+ |R|[ej,ek,R]i

3.6) e Y7 = Foo0= — : ' '
( Jk }Rxej] [Rxey |
) x(ejvek)~zjzk+yjk
. 4
T [
J&ej @ -2 J&ek €y =2y

where (Jj,k) represent adjacent édges.

So (3.4) becomes:
3.7 1 F, = 1.
' ( ) ' (J',k)e(l Jk

Also we define

= (R-R)((—)jjok,_)(R"ej)(R’ek) + |R|[ej3@k,R]i

ij
= x(ej-ek) - BTy T Y g
.8 B, = |Rxe,] = Jx(c -e,)-z° .
(3.8) 3 | erL J&(ea oJ) 2
So (3.5) becomes !
! G,
e 1 H? since F K = ﬁ“%E
Jk

I G e
(3.x)eC <% (3,k)eC

- e i
e -

Tt



54. Suspensions of Polygons

DEFINITION OF SUSPENSTONS
Here we take up the case of the simplest nontrivial examples
of polyhedra which may flex, suspensions. Let K be defined
as follows: K hﬁs Vertices Vs VqsVpe Vo4, where VysVose e sV
form a circle (vj adjacent to vV 4 (mod n), 4= 1,...,n) and

Cand v, are each adjacent to all of vq,...,v,.

Yo +1 n

the north pole,. and P(vn+1) = § the south pole, and

Call P(Vo) = N

P(Vj) =Dy j=1,...,n, vertices of the equator. Such a KX 1is
called a suspension.

We assume P, a giVen suspension, flexes. If N-S 1is constant
during the flex, we may regard N-S as an extra edge and P Dbecomes
n tetrahedra stuck together cyclicly around the edge N=S. It is
easy to see that then either P 1is not an immersion of a 2-sphere,
or P must have been rigid in the first place. Thus we @ssume' N-S

is variable during a flex.

. DEFINITION OF R AND CALCULATION OF %y

We define R = N-S8 (which may be assumed to be nonzero). Let
O = (ZN. be the chain of adjacent edgeé Clﬁ.: {(3,3+1)}, where
ey = Nlpj, C i+l = 1,E,Q,n,n (méd n). Thus (3.4), (3.5) énd'(3.6)

apply. However, there are some speclal relations which we must

calculate. Define e5 = pJMS. So



Y on = l o ) b 2 = . it e 1 . 1A
roots. Let =y (lej] . !ejl) s r (Idjl.!@j]) . When |R| T

~13 !
Eliminating *the variable ejeﬁ‘,
(4.1) z w-%(xA+ e.re, = 8Leal).
J A4 Jd J d d
S0 each z. is a linear function of x. Thus y. P, G..s H,
J 'yJ.K." ,j.K’ Jhy J

can be rogarded as functions of x and since ¥ ~varies as P
flexes, (3.4), (3.5),(3.6) can be regarded as identities in x, and
can be defined over an appropriate Riemann surface for complex X.
To gain understanding of these formulae and for future reference we

make some obgervations about the nature of the Fiy's,

THE ROOTS
First we charactorize geometriceally the roots, of ij, ij, and

- Note that "- Ay and oy ! l" " ane as V. ( ©° IXCEeP's ’ i
Hye Note that Fy, (and GJK) Ls.tue same & FJk(GﬁKQ except that

Yk = Vige
{(J’K), (K,J)] ig

so the roots of ij are incivded in the roots of Hﬁ and H

H? is a quadratic polynomial in x and Lhus has at most two

-

J
or |R| = J?? it is easy to see that R x ey = 0 as well as being
defined. Thus ry £ ré are thé'two‘roots of Hgo (In particular
they are real.) This can be verified also by direct substitution

into (3.7). Thus,

" - -
(l\l‘u d) 'H'j = q‘(}x - ‘ll%) <X' JJ) °

i
¢

{

THE BRANCH POINTS

LA

Next we find thﬁ Lranch points of yJk and iju By (3.3)

(8

:
Y3k is a cubic func%ion of x (recall Z4sZ) Bre linear in x) with
X

{.‘

|
= 0 as &a rcot. Jdue fder the two triangles determined Ly ej’@k
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and el, ek. Note that the two triéngles share a common edge, say

ejk = ej—ek. As‘above, when discussing the roots, we can flex Just
this part of the polyhedron to gain inform@tion about ij and

Y s1c° In particular let bjk’ bﬁk be the maximum and minimum value
of x = |R|2 for just these two triangles. Namely when: x = b sy
the two triangles are planar with N,S in the plane on opposite

sides of the line determined by € s ‘Similarly, when x = by, -

N,S are on the same side of the line.

Figure 3.

Thus, when X = by @ by, Yy = IRl[eJ,ek.,R]i = 0, and

. 2 ‘ .
0, bﬁk’ bjk are the roots of Y ik (It is easy to see that O is

a double root if bék = 0). Hence

2 1 .
(4.3) Y5k = T € " € x(x~btk)(x~b

J Jk

by (3.3), (4.1) and the definition of Cip T 8470 In particular

bﬁk’ bjk are nonnegative, real and

0 < rgg_ bl < by L 7y

since the r}, ry are obtained as the value of IR|Z  when we

restrict to a smaller portﬂon of P. We see now that ij and ij
| .

\Q .

:

f

i
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nave the branch points, O’bjk’bﬁk and each has four roots (perhaps

multiple roots),' rs, rj, rép Ty s where these points are regarded

as being on the appropriate 2 sheeted Riemann surface of ij or
ij. If a point is a root of ij, the corresponding point on the

"other" sheet is a root of G, and not for Gy (unless the root

e

is a branch point of course).

THE WINDING NUMBER

Let E be the equator of P, and let TE be fhe projection into R
(regard this as a map of the clrcle into R ). We still
sssume (which is Justified  if P is flexible)
that m(E) N 0= @. We define w to be the winding number of this

map. Then with -7 < ejk.< 7 defined as in §3, we see

2my = >_ e,ku
(G.k)ely 9

But by (3.6)

(4. 4) 8., = %Almg F

Jk Jk?

where that branch of log is taken so that -7 < 84k ome

THE WINDING NUMBER'TﬁEOREM
Recall that Fjﬁ is regarded as a function of x, and so

ejk ='ejk(x) 1s an %ﬂdlytic function of x with branch points or
singularities at rj5%5’rk’rﬁ’ ij; bﬁk’ 81l real. If P is
i .

flexible then |

\
- ) ? : o ,
}J e.k = j E: log ij.w». log il F,

T ; i - : Jjk
(3,k)eCyy L3,k e O (3,k)e Cy

F{=

\
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is constant and equal to 2mw for all complex x, except at the
singularities (which are finite in number). Now it is easy to show

the following remarkable fact:

Theorem 1: If P flexes (with a non-constant x) then w = O.

Proof: Let Xo be some fixed wvalue of x in the interior of some
real interval,where |IR|* = x. Let A be a path starting at Xg
and going to infinity in the upper half plane with Xo @8 its

only real point. We show that

lim F,. =1
page J ko ’

where the 1limit is baken along A. Clearly

e,'e Z, Z e
2 _ 3k 3 k2R, L
ij/x TR % ;Ef" i
regardless of the path.
2,2  95C5. 23,2 1
Hj/x, = et - @i?) > - g

© - So H‘j,/x.'_> i%. and Hk/;x:-~> i%, gince the same path is used both

cases. Putting this together we obtailn ij = 1. Thus

1lim log B, = 2ri w
K> 00 Jk‘ ‘jk"

where wjk is some integer. (A kind of local winding qumber.)

Clearly = w. Thus we are done if we can show each

X W
(Jsk)e @N gk
wjk = 0. Notice that the definition of wjk depends ogly on ij,
that part of P which is the suspension of ejk (namely, the lengths

of ej,eé, €y 185 ejk)’ and certainly W sy does not depend on

whether P flexes or not. (Flexing = D py Wap= W)
; (j,k)e(lN
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This is the key observation. At this stage one could choose
a convenient path, A, and carefully compute that wjk: 0. However,

instead we observe that wjk itself is a continuous function of the

- & B LB .. b :
lengths OfEﬁ,%QE%,eﬁ, ejk(ej & = Q(ejk e k84" €470 ek)), assuming

a continuogs choice of the sign of yjk" Thus, if we deform the -
suspensions of ejk continuously through polyhedra, wjk remains
constant. Here, let us assume that X0 remains fixed ﬂhrough the
deformabion so that the limit along A is defined. Let us sub-

by choosing a point in the interlor of the arc corres-

divide ij

'ponding to B Say the new edge from the north pole is

e& .(SO ‘ ij = Pj{/ U P&k)n

From the remarks above, since PJL and P deform to P and

, Lk gk’
wj& + Wor = wjk?“ﬁ&m%Mswe 886 wjk = 0. (Alternately we could deg

form ey to ey and since By, = 0, we obtain W = Wy = 0.)

Figure 4

Corollary 1: If P is embedded with the line segment from N to

S inside of P, then P is rigid.

THE OCTAHEDRON
Observe that when n = 4, we may regard P, the octahedron,

as a suspension from any one of the three pairs of non-adjacent vertice

1
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So, it is natural to hope that if the octahedron is embedded,
then at least one of the diagonals is on the inside. (This is the
same as saying that triangulation of the surface can be extended to
the inside without adding any new vertices.) Uhfortunately this

hope 1s false as one can see from the following figure.

\‘i"’) ')"")

V|
(»gt,T%)
Pigure 5
Later in Part'II we shall make a more detailed study of the octahedron,
and then we shall be able to show that all the embedded ones are

rigid.
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§5. Suspensions gi_Differentiable Curves.

Here we investigate a situation which is, in a sense, a
generalization of the previous results, but more basically repre-
sents a slightly different (more classical) point of view. However,
we still adhere to the philosophy that the way to prove rigidity is
write down a formula that must hold if the surface flexes, and
then extend the definition of the Variables involved to gain specific
(geometric) information about the parameters used to define that
formula. In this case the formula differs (by a log) from.the pre-
vious product formuia, and the way of describing the intrinsic
parameters.is'different.

We also run into a curious. anomaly that forces us to be careful
wiﬂl our definition of rigidity. Namely, if we define a CL suspension
in the natural wayiit becomes much too easy for a suspenéion to be
rigid. Since the surface is only "piecewise smooth" to start with,
it seems natural to allow "subdivision" in the definition of rigidity
in our category, and this in fact makes more sense (although some
surfaces may still be rigid for Cl‘ reasons rather than the more
appropriate "geomotric" reasons). With this more abpropriate
definition we obtain a result generalizing Theérem 1; namely, the

equator has winding number zero about the north-south axis, and in

fact this supplies "another™ proof of Theorem 1.
DEFINITION OF A C' SUSPENSION

Let Y‘:S:L > m5 be a Cl map, and Nps € R3 two points,

the north and south poles. Let Yle > ES be a periodic map defining
Y' parametrized by arc length. The (image of a) surface obtained

by joining all the lines from ,N to Y(s), and S to Y(s) is

{
y

i
¢
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 ‘ what we shall call a g} suspension, £, assoclated to Y, N,S. A

. flex of T (on more accurately of Y,N,S) will be the cpntinuous

homotopies Y. N(t); S(t): such that Yo = Y, N(0) = N, S(0) = S,
each Y, 1is ol for a fixed t (0L t< €), and Y, (s)-N(t) eand

Yt(s)—s(t) are constant for each fixed s. Also We require that the

length of the arc from Yt(so) to Yt(sl)’ along the curve defined

by Y, be constant for all fixed 8n.:8,- (We‘regard Y as parameterized'

by arc length so v-Y = %% . %% =1, and s 1is the parameter refered |

to above for Y. (s) - S(t), ete.)

We also remark that this definition does not take into account
a certain kind of flexing that one might want to consider. Namely
if Y is a circle lying in a plane through . N,S, then we can bend - :
P alohg generators parallel to the line through N,S. However,
this flex does not preserve the suspension property of ¥, and pre-
sumably, if Y does not lie 1in such a plane, (which must happen if
s is immersed) any "reasonable" definition of a flex will preserve

the suspension nature of L and fit into our definition, if ¥ is

inmersed.

DEFINITION OF A PIECEWLSE Cl SUSPENSION AND RIGIDITY

As mentioned before, the requirement that .Y(s) remain CF
everywhere turns out to be too restrictive, so with the same apparatus
as discussed above we define a suspension, £, .( associated with

Y,N,S) to be piecewise C1 if for a finite number of points

— ’ . . . 1
SO‘< Sl.<"'< s, = 8o+ L, Y][sj,sj+l] is €.

from the left at: Sj may not be the derivative from the right at

(The derivative

s;) (L = length of Y (51).)
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S(t) with the. generators constant, but only require the Yt to
be Cl on [Sj,sj+1].Note that this takes into account the poly-
hedral suspension as a special case, and in fact 1t will turn out
to be an equivalent notion of flexing 1n that case.

We can regard Y,Nﬁs as defining the Ilmage of a surface
homeomorphic to the two~sphere, SE, in RBe We are interested in
the question of when Y is rigid. I.e. when is every flex of ¥
obtained by restricfing a rigid motion of 83 (a congruence).

‘Oddly enough, in the C:L rigid sense practically every map is rigid.

Yet there are Cl maps, Y, ‘'such that by subdividing and consider-

ing them as pilecewise Cl maps, they flex.

THE VARiABLES
We shall treat both\caseé simultaneously. As before define
R = N-S. Let X(s) (or Xt(s)) be the orthogonal projection of
v(s) (or Y.(s)) into the plane orthogomal to R. Let x = IR|? = R-R,
LN(S) = |NwY(s)|2, LS(S |s-v( |2 which are constant during
a flex. To make the notation easier let us assume (without loss of

geqerality) that 8 = 0 (for all t).

THE WINDING ANGLE AND WINDING NUMBER

Let &', 8" be two points An the domain of Y. Let 8 "

s',s L

denote the angle (if it makes senwe) from X(s') to X(s") in . R.

Then 1t is easy to see that,if X‘% 0 for = e[sﬁs"]) then
(cf Stoker [T1]). '



-
where
X
(41 if det( > 0
A X
@ TxT
X

. 0 if det(®) = O,

‘Note that w 18 a continuous function of s',s" (even in the

s!,s

. . 1 P ) - . . .
piecewise C case) even though the integrand is only piecewise
continuous.

A simple calculation shows:

A X (2 L () (e X)-(xK)7
K (T}?T)l- (X-%)° 5
SO
- g" ’ = -
- X K) (X k) - (%)
(5.2) 61,00 = |, J(X. )0 - (L g

where the 4~ takes the appropriate sign‘; and () indicates
differentiation with respect to s.

Note that, if % 1s a polygonal suspension of the previous éection,‘
where the sj‘s correSpond‘to the vertices of the equator, then by

labeling such that k = j+l, Dby (4. 14)

1

B Ly e e
J+1 /7y o e
T 0 2 p oo ex) - (g,

log F 8

i+l T
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Thus, we have come upon the same quantity as before, but from

a somewhat different direction.

We observe that

so the winding number,

(5-3) W= 5%

Thus our task is set for us.

in terms of x = |R|2,

to show that w = O,

S

« is simply the 1ift of the map f£T

of X is (if X # 0)

if ¥ flexes in a non-trivial way.

P IER G w7,

X X

We must compute X-X, XX, X-X

When this is done we shall be able

THE COMPUTATION OF X.X, X.X, X.X.

Observe X =Y -

Z = N-Y. So Y'Y=

the generators. By the

identity) we see

Z+Z = 4

21 R, (recall S8 =0), and R=7Y + Z,

N? the squares of the lengths of

same computation as in L4.1("polarization"

RY = $(x + bgty)
X = 1
= gi(x -+ LSHLN)R
. 1
% = a=(bg-d )R
. Loy
R : é(LS—LN).
—_— L. 2 1. 2
(5.14) XX = by - B *‘Ls“LN) o (x LsmLN)
R SR i 1, 2
= -k Glhgthy) - g (tg-ty)
Differentiating,
. '_L . ° '1 ° o
(5'5) XX = ﬁ(LS + LN)M‘EK(LS“LN)(&S~LN)°
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Similar to the above

1t

o 1 i 12 15 3 42
(5:6) XX =1 - glhg-ty)” g (bgty)
. 1, o

1oty

it

)2 (recall V.Y = 1).
the if we regard the 4's as constants’all the scalar

gquantities above are rational functions of X.

RTIGTDITY WHEN x IS CONSTANT

Suppose that ¥ flexes (in the piecewise ot sense), where

|N-S| . is constant. Let [s1,8"] be an interval where X # O.

" is determined

Then, if we fix s', say, and leﬁ 8 varj, es's”
by (5.2) and thus must stay constant during the flex (since e(s)
is constant). Thus the suspension. of the whole interval [s,s"]
must remain rigid. If there is at most one point on the equator
for which X = O, then the whole suspension must be rigid; i.e.

all the flexed suspensions are congruent. Lf more than two X(é)ls
" are O, then it is clear that. T is not an immersion at either

N or S. Thus we have:

Proposition l: If a piecewise C:L suspension, ¥, 1s immersed

and |N-8| is held fixed, then ¥ is rigid.
In light of this we shall assume that x is not congtant during

. a flex (and in fact x parametrizes the flex).

THE ROOTS OF X-X .
As with §4 we can flex part of ¥ to gain information about
the parameters. In this case we see that X = 0 only when Y is

parallel to R and this happens only when



el
x =T - Eg)E = vy or (g + V)T = 1

Thus from (5.4)

(5:7) XX = () (5e1,)

which can be verified directly.

Thus if £ flexés,then x must at least be between max r, (s)
and mgn re(s). So we may assume X ¥ O during the flex, if x
varies at all. |

Note also that (507)‘defjhes a function of x for all complex
X except Tq,T,. We shall next apply a similar procedure to
)2

(X*X) (X°X) - (X°% and then define w(x) for almost all complex x

and then apply a fechnique similar to §4 to compute w(x), if ©
flexes with a variable Xx.
THE ROOTS OF (X-X) (X+X)-(%-%)°
These are analogous to the branch points of §4. Hoﬁever, if
Y ig not pilecewise linear, we do not have the suspension of a line .
segment to flex, as in §4, in order to find the zeros. Inétéad,
we extend the tangent to the curve and then flex the suspension
of. the. tangent line. From this we obsérﬁe that there are‘always'
two roots to the above‘suspension'lying between i) and rpe

Define E(x) = (XvX)(X»X)~(X«X)Qu Then from (5.4), (5.5),
(5:6), ‘

(5.8) _ E(x) = T xkat % ‘,

where
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b= - %KLS”LN)Q - %(&S+LN)(LN“LS)2 o %‘Ls“bm)(ig‘lﬁ)-
Thus x E(x) is a quadratic polynomial with two roots, which we
want to show are distinct and real. Once again this could pre-
sumably be done with the explicit description in (597) (plus a few
simple pfoperties'that would characterize those &N,LS‘S coming
from suspensions) but we shall indicate a geometric process which
shows this rather easily. ,

Fix &', and consider the tangent line through Y(s'). Let
Yp(s) denote this tangent line, so that Yp(s') = ¥(s'), Yp(s') =
Let &NT(S)

that

. . 1 ¢ ] ';
LPT(g) = dp(s') - g Ap(st)" 4+ (s-8' + ;:L(s'))g, P = N,S.

(LPT(S‘) = LP(s‘)g LPT(SY) = ip(s'), the above is easily seen
to be the correct form for a line, and R»Y, Y-¥, ¥-%, which

determine ¥, are expressible in terms of prbpg P = N,S.)

N

R e

Figure 6

\
i
{
V‘.

Y(st).

2 Y .
= |N-vp() %, Agp(s) = |5-¥5(s)|®. It is easy to check
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Thus we see that BE(x) at s' is the same for Y as it is
for Y for all x. Lf we flex N,8,Y, as in §4{ we see that
E(x) has two real roots between the roots of X-X. Call the |
roots of xBE(x), by(s) < by(s) (b; = b, only when N or § is

on Y). Then

where 1y { by < by rye Thus,

(5.9) ma.x. ‘ bj(s) Cmg, min ;bg(x)v
ﬁ&[8358j+ll se[sj,sjﬁﬂJ

Thig gives a falrly complete algebraic description of the

integrand of (5.3).

¢l SUSPENSIONS AND LOCAL RIGIDITY
Suppose L 1s a Cl suspension and we are worrled about C:L

rigidity. We assume N # S. We consider three cases:

Case 1 (Butterfly wings): For s' # s", Y(s'), ¥(s") is on the
1ine through N and S, and Y(s'), Y(s" are parallel to R.
Here it is easy to see that ¥ flexer with x constant (in the

]

O’L sense), by fixing the suspension from s' to s and rotating

1i

the suspension from s" to s' (regarding s', s a8 points on

an oriented circle).

Case 2: There is a point s', where Y(s') = N or S. By the

[ e ]

above we then know that Dby(s?) = by(e') and E(x) { O with
equality for only one value of x. Thus 1f ¥ flexes it is with

x constant.
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Case 3: There is a point s', where in every neighborhood of s',
U ,, the sign of e(s) is not constant. (E.g. 8 14n has a
g
relative max on min at s'), X(s) # O.
X(s)

e X.(S') L
) F

O

Figure 7
Here we show that ¥ is locally rigid at s', 1in the C:l
sense. Cl@érly, if x is comstant,the suspenslon of a neighborhood
of x 1is rigid.

The hypothesis insures that X(s') 4is parallel to X(s').
Thus E(x) = 0 at s'. Thus =x = bj(s') or x= Dby(s'). Let
X o= X be the starting point for the flex. By the above we assume
that x varies during the flex. Since e(s) changes sign in a
neighborhood of 3‘3 Us')
the correct sidg), e(s) will still change sign in Uy, for xq.

if Xy is chosen close enough to x (on .

Thus there is another point &" in Us“ such that Case 3 holds

for s" and x;. But this implies that x, = bl(s“) or x; = by(s")
which is impossible since then X0 would then be on the "wrong
side" of Xy (I.e. X, violates (5:9)). Thus =x must remain con-
stant during a flex,and a neighborhood of st is rigid in the
C:l sense. |
Note‘hOW'strongly the Cl nature of things is.used here.
We summarize: |
Theorem 2: Let ¥ be a Cl su&pensiono Lf either

!

\
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(a) |N-8| is beld fixed, and X(z) = O, X(g) = 0 for at
most one s. (Case 1 does not ocrur),

or ‘ 1

(b) %(s) # 0 for all s and w =0, tren T is C° wrigid.

Proof: For the proof of (a) we must only ammend Proposiﬁion 1 to

consider the case when X(s) = 0, X(s) ¥ 0. Put here it is clear
that if we call 8 the argument of lngiﬁu) 50
e~ Lo gt T ds M x[7” i

- 8 -8 ., then lim 6 , =7 - lim ©_,. So it is possible
Ogngr g" Ut giogh B gieg” 8 : p

to compute O_,.n On both sides of s, and we may apply the proof

of Proposition 1.
For (b) we simply observe that,if w = O, then either Cage 3
o iy o X o . -
applies to at least two polnts, weee(5)  is constant (in which

1x| o

case ¥  is clearly rigid), or there are two points s' { 8 where

X

Tx

T(S) is constant for e!' < &< s", and ¢(s) changes sign in
(s'-8, s"+8) for arbitrarily small 6. In this last case it is

¢lear that an argument similar to the ore used in Case 3 will apply
to show £ is rigid (over (s'-b, s"+8)).
It is'interesting to compare this situation with that described

by Sabitov for infinitesimal bendings of "corrugated" surfaces [6].

THE WINDING NUMBER THEOREM
Suppose E(x) and X-X are both non-zerco in the interval
[s',8"]. Then using (5.2), (5.4), (5.5), (5.6) we regard

S n(x) as a function of x for any complex x except

Og1gm = Pgig

for real =x in the intervals (-o, max bl(s)]; [min b?(s),oo)° It
s 5 ~

is easy to check that thisg defines esgsn(x) as in analytic func-

tions of X

B
L

Suppose & 1s & piecewise C suspension trat flexes with x

variable. By (5.9) we see that for
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s, { s é§sj+l’ max. by (s) < x< min b, (x),E(x) # 0

Jd = - ) o
Se[sjﬁsj+l seL“j,sj+l,

XX # 0, so e(s) 1is of one sign. Thus the above paragraph

applies to eS s (x). Let A be & path in the domain defined
J T+l \
above for x that starts at a real point and goes to . Let

B .5 (w) = lim By o (x). From (5.4) and (5.8) we see that
J73+1 e T R
the integrand of (5.2) is of the order of 'x""l/’2 as x -»w. Thus
]
Oy n. () = 0. But from (5.3) we see that 2m = £ 8, . (x)
J g+l : Jj o TavIrl

ig a constant for all x in the domain of B&'s, since it is con-

stant in a real interval. Thus w = 0, Suhmarizimg:

'Egﬁgxgmgéﬁ Let T be & piecswise Cl‘ suspenéiom, that flexes with
variable x. Then the winding numbes orf the eqguator about‘the line
through the nofthmsduth,poles, w, 1s zero.

Note Theorsm 3 specializes to Theorem 1 in case X 1is ﬁiecem

wise linear.

Coerollary 2: If & is a Cl suspension that is'immersed, then
1

¥ i CT rigid.

Proof': ‘If L flexes with x constant,the only way this can happen
i with the butterfly wings example of Case 1. But in that case ¥
ig clearly not an ilmmersion. Lf T flexes With x wvariable, then
we may assume ‘X(s) # O for all s, as well as E(x) # O. Theorém 3
1

implies w = O, and Theorem 2(b) implies ¥ is C rigid, a

contradiction. .
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SUBDIViSIONS AND AN EXAMPLE
Tt €eems to us that the notion of a ¢t suspension is some-
what restrictive and that one should allow at least for a finite
number of subdivisions of the equator to dilscuss rigidity. Loosely

?
subdivision points, then L becomes rigid at s!' because x 1is

speaking, 1f ¢(s) changed sign at &'y, and s' is not one of the

prevented from moving. If we subdivide at s‘; the situation
changes and ¥ may or may not become flexible. 'Thus it i1s reasonable
to require that at every such s' where e(s) changes sign we'have.
a subdivision (some Sj = g'). (However, for a given Y it may
hapben that there are infinitely many such s s and so it may not
be possible to describe Y 1in this way as a finite pilecewise ot
suspension.) Note this more or léss answers the conjecture of [2].
Tt is clear that the Y described there will flex, if we subdivide
at all s!'s,» ahd will not flex otherwise.
If one were to bulld a paper model of the Case 3 situation
and forced the model to flex (building the model only in a neighbor-
nood of .s'), a crease would suddenly'appear and it would bend along
that crease. | | |
The Case 3 situation perhéps can be illuminated by the follow-~
ing example: Let Y Dbe a curve in a plane pexpendicuiar to
N-S = R, between N and S, and let s!' be a Case 3 point,
‘where esné has a minimum.at g'. In a neighborhood of s' for
s Z_S' rgflect only.that part of % about the plane through

A
N,S, Y(s') to obtain a new curve Y.
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N | ”’““Z/

,5&;) peFLECT
R /

l !
a o

\

Figure 8
Theh this'new suspension flexes as x 1s decreased. However the
tangent Q(S‘) = X(s') is no longer parallel to X(s'). So if
we reflect back through the pléne through Y(s'), N,8, ¥(s') is not

defined. So s!' starts a crease in Y.

After Flexing

1

[e—

[CEFLECT o

Y
N - L | ,/”ff

Figure 9.
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$6. Remarks and Comments.

So far we have not proved that . any ;polyhedron (even an
octahedroa) is rigid for all embeddings. As is the case in the
classical theory we must put conditions on the embedding or map.
This is dissatisfying, but for the cases we consider (polygonal
suspensions) we have generalized considerably the classical result

for convex polyhedra, assuming we are only interested in rigidity.

THE TANGENT WINDING NUMBER

Before we finish Part T, we think it is appropriate to mention
a few results (without proof) and ideas that may be helpful even
if they seem to lead to deadends.

'The notion of a tangent winding number for a piecewlse smooth
curve in the plane is well known. (It is just the degree of the
tangent vector thought of as a map of .Sl to Sl, with due con-
sideration. made for jumps at the vertices, see [9].) If % is
a suspenhsion, let T denote the tangent winding number of the' -
projection of the:equator into the plane perpendicular tothe line

through the poles.

g@eorem: If ¥  is an immersion T = 1.

Thus iifwecouldeﬂuwvthat, if ¥ flexes (say with variable x) ‘then

Tkl ﬂ&ﬂiwewouldhaveearigiditytheormnforélljﬂmersedsuépehsibns; Un-

fortunately, this conjecture is false even for the (PL) orthogonal
suspensions of [2]. The following is a picture of a curve in the

plane that satisfies condition F, and thus its orthogonal suspension
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P7,P2
PIFM symmgtric about
y-axis
OP7 bisects PlOP5
LPPsP) = [P PePy

|opg| = ]OP3|

P.E i
,PT 5P4 colinear

Figure 10

If oné is given to looking for counterexamples to the rigidity
conjecture, one must at least look at a class of suspensions wherea typi-

cal example may look like  the suspension represented by Figure 10.

IDEAS FOR THE GENERAL PROBLEM

Clearly something more is needed for the general rigidity
problem for polyhedra. However, we believe that thebequations
described in §3 could prove the start for a éomplete proof. Unfor-
tunately, at this time, it seems difficult even to provide appropriate
conjectures. The best we can do now 1s to describe how the equations
might be modified to sult the general situation, and a vague outline
that surely has to be modified. ¥

First, choose a point-call it thﬁ origin, 0 - that ig in a

clever way an appropriate function of the pj's.

;
|
i
;
{
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2

Next consider the normalization map n:p » 8% defined by

n(p) = T%T. We wish to compute the degree of n from the intrinsic

and extrinsic information. Namely let Xj = lpjlg; and let pj,pk,pL

be a triangle (2-simplex) of P. Let ej“k , Dbe the angle from
ot p

.) along geodesics, in SE.

n(p,) to n(p,) with respect to n(py

Then from the anhalysis in &3

R ey Y L . o 3 . : :
- _ (pkp,b)(pj pj/ (pj pk> (PJ p,{) + [pjl[pl{"pb’pj]l
J ek, '

16

e |pjxp&l ijXpL|

where all the variables can be written in terms of Xj’xk’kL and

the lengths of the edges. Now the sighed area of the spherical
j): n(p}£>5 D(PL) 18 ej:k,L + ek:&,j5+esz,kf'W = 8[J,k,4].
eie[J:k’L]

triangle n(P

Thus can be written in terms of the xj's and the length
of the edges. Thus we thain a formule similar to that of (3.4).

We also bbtain a formula corresponding to each Py as before by
taking R = pj. Togethgr these formulae should give some intrinsic
and extrinsic informatioh about 'P, if P flexes. The extrinsic
information should say someﬁhing about when the degree of n is O

(for hélpful choices of the origin). Hopefully this would be enough

to determine rigidity.

e
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