AN ATTACK ON RIGIDITY, II
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§1: Introduction:

This is a continuation of Part I, where we have set up the
notation and defined the fundamental formulae for our attack on
rigidity. We are interested in the continuous rigidity of polyhedra
in R3, and we have specialized to the case of a suspension.

Our main goai here is to show that ifa polygonal suspension 1s
embedded it is rigid.

We briefly review the notation. N, S, the north and south
poles, are ‘the suspension points. pl,'pg,...pn are the -points

on the egquator in cyclic order.

! !

= =1 -
x = R.R, zj = R.ej = 2(; + ej.e‘j ej'ej) .

C = 1(1,2),(2,3)...(n,1)} is the collection of indices of

pairs of adjacent vertices (for notational convenience).

!
ejx = ©j - ey s (j,k) e€ , are edges of the equator.
) eJ..eJ. ej.ek Z.j
. — 2 ‘
yjk = |R| [ej:ek:R]:L ’ (J:k)G@:YJk = -x det ej'ek '?k' €y Zy

ZJ. »Zk X

ek) - ijk + Yax > (j)k) EG

G.. = x(e.- 3
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Hy = IRxejl s Hj x(e..e;) - 25

G. .
F = .—% = elejk
J 'k

ca.
w
st

Tt 33 > Wm3 is the orthogonal projection onto the plane

perpendicular to R, the reference vector.

- o 3
6% = angle from w(ej) to W(ek) in m(R°) .

The basic equation 1s

! B. = 1.
(5,k)e€ 9%

We present a brief table of contents for Part II.

§2: Generalized Volume

To any polyhedron whose domain 1s an orientable 2 manifold,
we assoclate a number which specializes to the ordinary notion’ of

volume in case the polyhedron is embedded.

§3: The Rigidity of Embedded Suspensions

Using §2 and the notation of Part I we calculate the volume of

. a suspension that flexes in a non-trivial way. It turns put to be

0, thus yielding a genuine rigidity theorem.

§4: A Description of Flexible suspensions:

e

We give a fairly complete characterization of the solutions to
the basic rigidity equation deéfined in Part I. It uses some basic
results from algebraic geometry about the group operation on a

non-singular cubic, as well as a flow graph to describe the roots
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of the rigidity equation. We also describe how to bulld some

flexible octahedra (with ruler and compass say ).

§5: Applications and Conjectures:

We describe what we hope will be some ideag useful to structﬁral
engineering, as well as algebraic geometry. We also pose a few

cogent conjectures.



§2. Generalized Volume

et

Associated to any polyhedron (not just a suspension), whose
domain is an orientable 2-manifold, is a number that will turn out
to be the volume enclosed by the polyhedron in case it 1s embedded.

Let P be the polyhedron with vertices PysPpseee o If P
is orientable and <pj,pk,pb> determines a 2-simplex of P, we
can say J,k,? agrees or disagrees with the orientation on P .
Note the orientation is such that if (pj,pk,pb> and <pk’pj’pm>
are two 2-simplices of P with a common facgfthen they both agree
or both disagree with the orientation on P . (In fact any even
permutation of the indices doés not change the orientation and
any odd permutation does change the orientation;).

It is well known and easy to prove that the volume of the

tetrahedron spanned by O (the origin), pj,pk,pL is

1 1 .
i~ det(pj,pk,pb) =5 [pj’Pk’pL] the scalar triple product.

Thus we define

1
(2.1) V(P) ='6'2[PJ"PK’P,L] ’

the generalized volume, where the sum is taken over all 2-simplices

<PJ'
(If we change the orientation of P we change the sign of V(P).)

3pk,pL> such that they agree with the orientation of P .

Temma 1: If P is embedded, and the orientation is chosen appropriately,

then V(P) is the volume of the region enclosed by P .

Proof: From the discussion before (2.1) we see that each summand
of V(P), % [pj,pk,pL], is just the volume of the cone over
(pj,pk,pL> with the sign chosen so that, if the normal pointing
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away from the solid enclosed by the surface 1s on the opposite
gide of the plane determined by pj,pk,p&, then the sign is +,
and the sign is - in the opposite case. Note that this choice
of sign is compatible with the orientation determined by the
embeddiﬁg and outwafd normal.

Then it is easy to see that the volume enclosed by P 1is
the sum of the volumes of the cones in some subdivision, where the
gigns are chosen + or - as above. Since V(P) is invariant

under subdivision the result follows.//

'.Figure 1.
Remarks:

~--TIt is eﬁsy to check, in ahy case, whether P 1s embedded
or not, that V(P) is independent of where the origin is chosen,
if P is orientable. Also V(P) #0 if P 1s immersed and |
bounds &n immersed 3-manifold. In fact V(P) turns out to be the
volume of the immersed 3-manifold.

--In the differientiable case, we can perform a similar analysis,

and it is easy to show that the volume enclosed by a surface S 1s

‘L f(wex)ar ,
3
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where X = X(u,v) describes the surface, N i1s the outward

pointing normal, and dA is the area differiential.

Volume of Suspensions:

We specialize the above to the case of a suspension, and
“put it in the context. of the notation of Part I.
Tet us regard S , the south pole, as the origin. Then

R=N, and

[pj’pk’N] = [N - pJ"N - PK’R] = [ej’ek’R]
S bl

Thus if P 1is a suspension (with an appropriate orientation),

Il

(2.2)  V(P) J_‘i‘—i(j k}eéyjk

This is the key result used in §3.
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_33. The Rigidity of Embedded Suspensgions.

Equivalence Classes EE yjk’S

PR

Recall from I.4.3 that

2 1 '
Yoo = F Cqx Cgx X (XPgp) (x-by)

_ ‘ _
where bjk < bjk are real (and x 1is between them when yjk

represents an actual polyhedron).

We say ¥ is equivalent to y. (more precisely we
ERS] Jpo
'l - L . ' '.
k 3 eqguiv j =
should say (Jl, 1) is eguivalent to (Je’ke)) iff bjlkl bJeke

and b, =D, I The idea now is to split the fundamental
LR R -
rigidity (or flexing) equation into several other eqguations, each

corresponding to an equivalence class.

Temma 2: Let P be a polyhedron that flexes with variable x ’
and let C?o CC? be a subset corresponding an equivalence class

described above. Then,

(3‘ 1) 'n (Q'k + y k) = n (Q ek -y k) .
(3,%)ef, ¢ J (3,0)ef 3 J
is an identity in x ,

where ij + Vg = ij , and 'ij = x(ej.ek) - 247y -

1 ' 1
Proof: Let b ,b correspond to the bjﬁs and bjk's in the
definition qf C?O . Let C?lc:Cf be the subset corresponding to

1 H
those yjk's such that bjk =b (disregarding bjk) .



We have from (I.3.5) that

Sy 2
(:j?k)c—:e(ijJr ) (g,meeﬂj

and H? is a quadratic function of x . There are several ways

now to see that

(3.2) n (Qq o +y4) = 1 (Qur =Y ar) -« -
(3,5)e@ IEIE T (gx) € IE I
i9 . Q +y -i8 Q=Y s

For instance e gk - _Q%%ﬁ_ﬁ , and e gk _ ’%3@?QE

Jk i’k

18 ; -0

Thus (3.2) follows from Il e Jk _ 4 1 Jk

Jrk €€ (j:k)ee

(3.2) is an identity in x, where we regard Qi and Y35

as analytic functions of x . ij is a nice guadratic function
of x with no poles or branch p01nts, and y. 5k has no poles and
only two branch points at ka and b. K Thus if we start at
any x and proceed around a path that loops once around b and
i 1
not around any of the other bjk's or bjk s (unless they are
1
equal to b) , ‘then only the sign of the yjk s corresponding
to C?l will change on both sides of (3.2). Thus
(3.3) 1 (Quutya) I (Qeya) = 1 _(Qu~yo )0 (o 4y.) -
e-6, e, Je IR el Jk Jk@.l Jk °Jk
Dividing (3.3) with (3.2) and cross-multiplying,
2 2

I (Q. +y ) = |1 (Qs=¥as) .
e gk v jk @1 Jk Y ik



Thus,

(3.4) en (Qgutygy) =% 1 (@ ) - \

5k 5k
1 g}
If (3.4) holds with & minus sign, then we compute the coefficlent

of the highest power of x on the left and right (i.e. divide

2

both sides by x m,m = numper of elements in C? , and take the

limit as x » o .) On the left it is (-7)™ and on the right

, 1y M . . . . 1
it is -~ (—EJ ,- since the leading coefficient of ij' is - -
Thus (3.4) must hold with a + sign.

We now repeat the above argument with (3.4) replacing (3.2),
é?l

(3.1) thus follows.//

’ 1
replacing 63, 6% replacing 6;; , and b replacing b .

Anéle Signs and Edge Lengths

We investigate the nature of yjk's more closely. If P flexes
with x variable (3.1) (as well as (3.2) etc.) must hold in some
real interval and thus holds for all complex X on some appropriate
Riemann surface, as was implicit above and discussed in Part -I.

When x 1is restricted to that real interval, however, 'yjk is
pure imaginary'and we wish to distinguish when that imaginary

part ig + or -~ . So we define ejk = glgn of [ej,ek,R] in that
flexing interval. Note that € 5y ig also the sign of ejk’ and
1f the orientation on P is chosen correctly ejk is +1 or -1
as - P is convex or concave, respectiveiy, at ejk.(lf P wgre an

embedding). In any case

(3'5) yjk = %Ejkl eJKI '\/"‘X(x"bgjk) (X—b,jk) i ’ ' }
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where the positive square root is chosen, and x 1s in the flexing

interval.

Angle Sign Edge Length Lemmas.

Lemma 3: Let P be a flexible suspension, with x variable,
and let (3, represent an equivalence class of Yi's - Then
(3.6) T e |e..] =0,
. k' ik
(5, k), 9% Y
Proof: If we expand (3,1) of lemma 2 by the binomial theorem and
collect the terms on one side, we obtain
Vi
(3.7) (enQ E-Qi—+... = 0,

Co

where the terms left out involve higher powers of the yjk's and
lower powers of the ij’s .

From (3.5) we see that the order of x in each Y 5% is
3/2 , and of course in ij it is 2. Thus from (3.5) we see
that the coefficient of the highest power of #/x in (3.7) in a
power series exansion about o (i.e. we take the limit along a
path in the upper half plane avoiding the branch points) is Just

( 1)m-1 5

T o Soxlogel

(3,%) €y

Thus (3.6) follows.//

One may regard (3.6) as a kind of infinitesimal non-rigidity

a'tco.

Temma 4: With the same hypothesis as lemma 3, then
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z ¥a =0 , and thus I Vs
(3,5) @ o (3,5) @ %

ig an identity in x .

. 1
Proof: Let b', b be the bjk‘s and bjk's , respectively,

defining &, . Then,

= ’ T ~hHh) 9
T yjk: C% ejklejkl'/ x(x-b')(x-b) 1

Co

""(83‘ ejklejkl> Jx(xb) (x-b) 1 = O //

o)

Theorem 1: If P 1is an embedded suspension, or is immersed

bounding an immersed 3 manifold, then P is rigid.

proof: In either case V(P) # 0 . If P flexes with x fixed

P is an immersion at neither N nor S, as was discussed in

Part I.
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§4. A Description of Flexible Suspensions

o—

We wish to investigate in more detaill how flexible suspensions
can exist in a non-trivial way, namely, when x varies during
the flex. This amounts to "solving" the basic rigidity equation
which in turn %inges on the nature of the roots of each side of
(3.2). The idea is to Tind enough conditions on the extrinsic
and intrinsic parameters used to define ij to allow us to

build some non-trivial "flexors" (flexible polyhedra).

The Roots
Recall
i6 . . Y
ik _p o Sk s
e = J.k = H ~H ’ and
5Hy

the parameters used to define these variables depended only on
! 1

lengths of the five edges, ej, €0 ej, € ejk .

(4.1). <ij+yjk)(ij"yjk) = H? Hi = %(x~r;)Cprj)(xwr;)(x—rk)
from I.U4.2, and the section on roots of Part I.

We see that the four roots in (4.1) are entirely arbitrary
;'s be smaller
than the smallest rj . Algo it is easy to see that the four

upvto the conditions imposed on them that all the r

' |
roots of (4.1) determine Iejl,lejl,lekl,lekl (but one does not

know the order) by say

eyl = 36T, +47) ), leylo= oy /T3l

!
with ej and ej possibly switched.
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The other parameters used to define the factors on the left
of (4.1) are ‘bjk and bjk , and implicitly we shall discuss

their relationship to the r, ' s later.

4
The importance of (4.1) is trhat it says that each factor
. = @, . schbly .9 . RS +4 . 0
ij + ka - Gak has exactly four roots (counting roots with
multiplicities) on the Riemann surface i1t defines. In fact if
we have a root one sheet of the Reimann surface it is not a root
on the other sheet but is a root Tor the other factor (except at

a branch point of course), on the other sheet.

atandard Form for the Factors

The basic eguation we shall deal with is (3.1) for each
equivalence class C;b . I (3;1) holds for each equivalence class
then (3.2) holds for all of (. This in turn, in view of (M.i),
implies that (%'ij =+ 1, and as before this must hold with + 1
to be an identity in: x . This is the basic rigidity equation,
which in a sense says that the suspension stays closed up as X
varies. Thus, if we can devise polyhedra such that (3.1) holds
for each C?O,, we will have flexors.

‘. nl A— . ‘ -
Thus we now consider a fixed C? »  with b, b asg before.

We define y =+-x(x-b’)(x-b) 1 =0 that

(4.2) y2 = x(x-b')(x-b)

In view of §3, the roots of ij are the intersections of
the curve defined by (4.2) and the guadratic
2Q -
R R
(4.3) yo= —Y

€ skl €]
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This is the way we describe the roots.

The Symmetry of the Roots.

Note yjk = % ejklejkiy . Thus we may regard both sides of
(3.1) as polynomials in x &and y end a root as a pair (x,¥)
Then (3+1) simply says that (xo,yo) is a root of the left side
say, if and only 1if (xo,~yo) is also a root. This in turn says
that the intersections defined by the curve (4.2) and all the
curves defined by (4.3) are symmetric about the x-axis. Also it
is not hard to see that if we have gusdratics defined by (4.3)
and the intersections are symmetric about the =x-axis, then (3.1)
holds.

One might be tempted into guessing that the symmetry condition
implies that the quadratic factors of (3.1) cancell, but in fact

this does not necessarily happei.
\

The Non-Singular Cubic

We now have the problem of how to describe in reasonably

general terms how one creates factors with the symmetry condition

o

of above.
Fortunately, however, the non-singular cubic, of which (3.2)
is an example, has é long and illustriéus history. Much is known
about this curve, not the least of which 1ls that it is an abellan
variety. 1t turns out that it is possible to define a group
operation on the curve in very natural way. Namely, we can choose

any point and call it O . We shall choose O to be the point
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at o on the y axis. Then if QJ, Qe, QB are three distinct
points on the intersection of a line with the curve, or two of
the Qj's are equal and the line is tangent to the curve there,

the group is defined by the condition @, + Q2 + Q3 =0 ., If

Q@ 1is on the curve, -Q is the reflection of @ about the x-
axis. It is well known that thisin fact defines an Abelian group

(see Walker [9]). Over the complex numbers this group is the

1 1 s : . .
torus S~ @ ST, and in our case over the reals (with the zero,

e, thrown in) it becomes & subgroup isomorphic to 22 @ Sl.
4Y

S8

Figure 2

Elliptic Functions

We also remark that (4.2) is also an elliptid curve in the
sensé that elliptic functions can be used to parametrize 1t. In
fact it is almost in the standard form that is classically used

for the Wierstrass 72 function. There, if we define the curve
2 3
(4.0) yo o= AxT - gpx - 8y s

' . .
it is satisfied by y =7~ (z), x =/Az) . Thus y :7_0_(&) ,

!
X =7‘:{Z> + bgb o7

. patrametrizes (4:2), and is in fact a group homomorphism. 7(7 is

, for appropriate g and &y defining 70,

doubly periodic and its fundamental parsllelogram in our case 1s
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a rectangle with the image of the top side and middle line the real
part of the curve. (see Lang {67 or Du Val {7]). Thus in what
follows the description could just as easily be carried out upstairs

in the complex plane.

The Quadratic

Our basic problem is to describe how unsymmetric quadratics
can intersect the cubic (4.2) in such a way that the intersections

are symmetric. |
~ A

Let y = ij be a quadratic curve, where ij is a quadratic
function of x . It is easy to see that this curve intersects

(4.2) at four finite points (perhaps complex points in general,

but in our case they are always real). It is also easy TO see

that if we homoginize the egquations (complete everything to pfojective
situation) that there is in fact & double root at o (what we

called the origin before) thus Jjiving with Bezout's theorem.

Let Qg Qu Qg 9 be the four finite intersections of y =.&jk

with (4. 2). Then by well known results of algebraic geometry (eg
theorem 9.2 of Walker [9]) we see that Q + Qy + Qg + Qu'= 0,
and this condition is sufficient for the existance of such a

A

ij to intersect (4.2) at the four given points.

The Conditions /

We wish to write down a collection of conditions that must
be satisfied if a suspension is to flex (with variable x ).

However, we need a certain amount of ndtation.

- 2 Q. ,
Let ij - gk be the guadratic of (4.3). We have

ejkiejkl
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the four roots of (4.1) which serve as the intersection of (4.2)
and (L4.3), and we need a way of labeling them. For ij suppose
k=J+1l on J=m», k=1, Then we label the four points

- ] , ? -
(x,y) on the curve (4.3) QY_4Qy.5 Ay Q), corresponding

‘respectively to the x valués TS’ r r Also, for each

j’ I‘RJ k °
point Q on the curve let Q denote its x coordinate.

If the Qj+’s correspond to the roots of (3.1) they must

—

satisfy the following conditions.

(A) @Y. =8y, qy_ =y, forall §=1, 2...n.
(B) Q&_ + Qjm + Q£+ + Q.. =0 in the group corresponding
to  (3,k) e(Z.

() For any equivalence class (., the collection of Q's
(counting multiplicities) is symmetric about the x-axis.
(Also, the Q'u; are on the finite component and the Q's

on the infinite component)

(B) and (C) have been discussed above. .

(A) is simply the condition that 7y and ré depend only on
lejl and 195[ . Also it is handy to note that if (k,J) . and
(3,4) are in the same equivalence class (thus defining the same
“curve (4.2) and the same group), then (A) is Just the condition
that Qé_ = & Q5+, Qs = + Qj+

Using the condition (A), (B), (C) it is possible to write
" down points on a curve (4.2) that would hopefully come from a
.noh~trivia1 flexor. fhe following table describeg such a situation

where three points A, B, C a&are chosen on a curve(M,EL with say
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A, B on the infinte component and C on the finite component,

(It is clear that Q3+ 1s on the finite corponent and Qj+ is

on the infinite component). There is only one equivalence class

and n":)‘ll-

$ . ! !
‘\ -1~ Y 3-1,- 3+

1 A B c . ~A-B-C

D B -4 A+B4+C -2B~C

3 ~A -B 2B + C A-B-C

4 -B A -A+B+C -C
Table 1.

(The first and third columns are shifted to make it easier to verify

condition (B).)

(

The Graph

The.coﬁditions above are sﬁfficient to ensable one to create
many non-trivial flexors, in particular, in the case of n = 14,
-the octahedron. However, we would be less than honest if we did
not indicate how such tables as the one above were constructed.

In particular there 1ls a graph assoclated to a non-trivial flexor
which considerably simplifies the construction of such tables.

We construct a graph, qu, (a multigraph in the sense of
Harary [6]) corresponding to each equivalence class or group as
follows: The vertices of qu.-cqnsist of the elements (j,k)ee%.
By property (C) there is a pairing between the roots, the

i

's and QL 's . Choose one éuch pairing. We say (jl, l)

. .
sy {

l -
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ig adjacent to (jg,kz) if one of the Q's for (jl,kl), Qél ,

Q. is paired with minus (in the group) one of the
1

Q’S for (jg!kg)

QL ., Q
o klf k1+
we furthermore wish to define a flow on ﬁﬁ, in the nature
-0
described in Berge [1]. Assign a direction to the edges of

G. - arbitrarily. If the direction of an edge isfrom (jl,k ) to

e 1
(ljg,ke), then the flow is X, if X is the value (thought of
as in the group) of the (jl,kl) Q that is paired with (jg,kg).
Note that condition (B) impiies that the total flow into any
vertex 1s zero.

Since each (j,k) corresponds to four Q's, the degree
(not counting direction) at each vertex is four. Notice, also,
frgm the nature of the graph and the fact that (L4.2) has two
components each Q' 1s necessarily paired with é Q' and
similarly for the Q's. This is because the’ Q''s are all on
the finite component and the @Q's are all on the infinite
component{ Thus the edges can be partitioned into two equal
collections, corresponding to th¢ Q''s and the Q's , and each
vertex is adjacent to two edges of each type. Each collection
of edges is called a two-factor and we call them F{ and F
respec‘tively. Thus the graph obtained is simply a graph with
two disjoint two-factors, that also has & non-trivial flow.
Chapter 5 of Berge [1] giveéﬁa gond discussion of how to construct
all possible fiows (where the flow is in any abelisn group) in .

guch a situation: We shell construct examples in a moment.



The Qgﬁahedron

Wwe at lasi have enough inf'ormation 1o construct at least
a1l flexible octahedra. We &ssume that the edges do not overlap
yielding a trivial type of flexor. '

There are three main types of Tlexible octahedron. The first
type, which we call planar, is constructed by taking a gquadralateral
in the plane that has opposite edges equal, but crosses itself,
and then choosing the north and south pole in the plane of symmetry

through the crossing point. These were discribed in example 1 of [27.

Figure 3
The second type, which we call the symmetric flexors, have

all the opposite sides equal, but they are gsymmetric about some line.




25

in both of these types, there are two c¢lasser, each consisting
of two elements. In ihese cases tre facturs ol (3.2) cancell in
pairs.

The third iype, whick: we call flat flexors, have only one
clags and thus when N and S s&are at ithe maximum or minimum
distance apart the whole flexor lies fliat in a plane. These are

first described by means of the associatea graph as follows:

RN
wzBeT

Figure 5

Figure 6

Figure 7
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4//'is the F!' factor, /// 1s the F factor.

Figure 5 generates table 1. Note that condition (A) puts
additional constraints on the flow and is automaticall& incorporated
in the above flows. With a bit of work, one can show that the
three graphs above generate all possible flat flexors, and the

three types exaust all possible octahedra which flex (non-trivially).

Ruler and Compass Construction

For flat flexors we give a ruler and compass-construction.
(We thank R. Walker for suggesting this construction as a sim-~

plification of an earlier one).

Step 1: Choose two points N, S 1in the plane, and draw a
cirele, €, (of not too large or small a radius)
about S .

Step 2: Choose two points p, Py on ah ellipse (or
hyperbola) with foci at N, S . (i.e.

~ pyNl o+ Ipy-sl = [pg-N| +lpg-s] ).

Step 3: Through P, draw the two lines Ll, Li that reflect
N into C . (i.e. the circle through N with center
at Py intersects”  C at A, A, Ll’ Li are the |
perpendicular bisectors of NA, NAT respectively.)

L) that

draw two lines L3, 3

Step 4: Similarly, through Py
reflect N into C. |
H = | = ! T
Step 5: Call P, Ll N L3, P, Ll N L3..
N, S are the north and south poles, pl,pg,ps,pu- ﬁhe

equator, for a flatened out flat flexor, if you have
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not messed up the choices involved to complete the

construction above.

Figure 8
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§5. Applications and Conjectures

Structural Engineering

It is a little difficult to conviiice someone that what you
have is vital to them when they are not even aware they need it.
However, we believe tﬁat some of tne 1deass presented here could
be'useful i, some aspects of structural engineerihgo Part otf the
problem, it seems to us, 1s that most of the structursl engineering
that deals with what we are concerned about(rigidity and flexibility)
has to do with what they call geometric stability (see [4] for instance),
which is what mathematicians call infinitesimal rigidity. This
is because a geometrically stable structure is necessary for all
the forces to be (more or less) cqlculated,

However, if a structure is in an unstable state, but still
rigid, it takes infinite internal forces to maintain the structureQ
So what probably would happen is that the members would deform
slightly to a éeometrically stablie structure in which the forces
can be calculated. (For instanqe, any flat vertices introduced
in a rigid structure would surely have this property). Such would
be the case unless the structure were continuously non-rigid
(flexible) in the first place, in which case the structure would
probably fail.

On the other hand Gluck has shown that the chance of con-
structing such a structure at random is zero. (see [5]). But
Gluck's results says nothing.about being close to a non-rigid
struéture. 1t may happen that a structure is built close (in
the sense of the natural topology discussed by Gluck) to a non-rigid

!
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structure, and then with only a smenl derormeTion 91 1he memders
start to foliow the bending ilnverent in thsl uou-rigld structure,
and possibly fall, or vbend beyond specaiiled limits. even though
mathematically this could not neppen (since fThe edages are not
assumed to change length).
We propose that some of the ildeas dlscussed above should
be helpful in investigating this problem. ln particuisy, 1f we
have a precise idea of whnat the flexible strucfures are, we can
calculate how far away any particular structure is 1'rom the nearest
flexor. This, -hopefully, would serve 55 & good enouzl. buirer to
prevent the structure Trom bendlng beyond specified ~imiis.
Altnough it is difficult in genersl to provide sucl. preciée
information, at least in the case of an octehiedron more ox less
complete information is aveilable in §4. For such a structure,
we should be able To develope a good ides of how far we wust be
from a flexor to be sure of no more tharn suoﬁvand such a vending.
For more general structures, possibly the idea of generalized
volume may be useful to detect being cliose to a flexor, since the
genefalized volume is a contimyous function of the structure.
(Also, certain trivial flexors must be taken into sccownt aé well).

Presumably, the volume of & Tlexor in general is zero, unless |
the struclture flexes in a trivisl way (which would ve unlikely
to be built perhaps).

We feel that the above should be useful in some limited
circumstances, but in most practicel instances such dGetsliled

information is surely not needed.
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Algerbraic Geometry and Yumber Theory

One very interesting observation about what we have done is
that most is purely formal algebraic manipulstions of one sort
or another. 1In fact, although the complex numbers were used as

a completion of the reals in a non-trivial way, most could be done

‘over a fairly arbitrary ring. (We must be allowed to divide by

2, and possibly 3.)

Formally our problem consists of "solving" the quadratic
equations (pj—pk)-(pj—pk) = constant, for J,k adjacent. The
solution in general is complicated, but again at least in the

case of an octahedron, it is fairiy complete.

Conjectures and Problemg

There are many questions one can ask. We mention only a

few.

1. If a polyhedron is flexible, when must its generalized
i volume be zero? '

o, Even for the piecewise dL suspensions of Part I, if
they flex in a non-trivial way, does the volume have to
be zero? )

3. How does one get information about the strong rigidity
conjecture? Namely, even for suspensions, is an immersed
suspengion rigid? (This is true for an octahedron since

1t 1s immersed if and only if it is embedded, however.)
Tf one has a taste for number theory there are two guestions
that seem interesting.

L., TIf PysPpre-- represent the vertices of a polyhedron,
what conditions on the lengths of the edges ejk will
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insure that the quadratic eguations ]pj~pk|2=lejk|2

will have a solution having the pj*s with integer
coordinates? '
5. With lell,legl,.,. representing the edge lengths of a

flexible polyhedron, when will the lengths be integers?

In a different direction we have the following conjecture:

6. Let a: G _ S°  denote the antipodal map, and let
p: B3 >1R3 denote reflection apout the z-axis
(i.e. p(x,y,z) = (-x,-y,z)). Let £ G  — RS be

a map (a polyhedron possibly) such that  fa = pf . Then
we conjecture that f is flexible.

Clearly 6? igs true when S2 is a PL suspension and T
ig an isometry, from the discussion earlier. If this conjecture
were true and f were an’immersion the strong rigidity conjecture
would be falsef

However, such an f cannot be an immersion as can be shown
with a bit of work. (We would like fovthank.R, Livesay and I.
Berstein for helping us see this). |

Of course the big question is how can the results for suspensions

‘here be generalized to more polyhedra. We fervently hope and

believe that the ideas developed here will be useful.
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