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A basic geometric question is to determine when a given frame-
work G(p) is globally rigid in Euclidean space Rd , where G is a
finite graph and p is a configuration of points corresponding to the
vertices of G . G(p) is globally rigid in Rd if for any other configu-
ration q for G such that the edge lengths of G(q) are the same as
the corresponding edge lengths of G(p), then p is congruent to q.
A framework G(p) is redundantly rigid, if it is rigid and it remains
rigid after the removal of any edge of G .
When the configuration p is generic, redundant rigidity and
(d + 1)-connectivity are both necessary conditions for global rigid-
ity. Recent results have shown that for d = 2 and for generic
configurations redundant rigidity and 3-connectivity are also suf-
ficient. This gives a good combinatorial characterization in the
two-dimensional case that only depends on G and can be checked
in polynomial time. It appears that a similar result for d ! 3 is
beyond the scope of present techniques and there are examples
showing that the above necessary conditions are not always suffi-
cient.
However, there is a special class of generic frameworks that have
polynomial time algorithms for their generic rigidity (and redun-
dant rigidity) in Rd for any d ! 1, namely generic body-and-bar
frameworks. Such frameworks are constructed from a finite num-
ber of rigid bodies that are connected by bars generically placed
with respect to each body. We show that a body-and-bar frame-
work is generically globally rigid in Rd , for any d ! 1, if and only
if it is redundantly rigid. As a consequence there is a deterministic
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polynomial time combinatorial algorithm to determine the generic
global rigidity of body-and-bar frameworks in any dimension.

 2013 Elsevier Inc. All rights reserved.

1. Introduction

A d-dimensional (bar-and-joint) framework G(p) is a pair, where G is a finite graph and p is a
configuration of points in Euclidean space Rd corresponding to the vertices of G . Two frameworks
G(p) and G(q) are equivalent in Rd if corresponding edge lengths are the same. We say that G(p) is
globally rigid in Rd if when G(q) in Rd is equivalent to G(p), q is congruent to p. The configurations p
and q are congruent if there is a rigid congruence of Rd that takes p to q.

A framework G(p) is rigid in Rd if there is a neighborhood Up in the space of configurations in Rd

such that if G(q) is equivalent to G(p) and q ∈ Up , then q is congruent to p.
Determining global rigidity of G(p) for a given configuration p = {p1, . . . ,pn} is NP-hard for any

d ! 1 [21], and the difficulty of determining rigidity for d ! 2 appears to be equally hard. A natural
way to address this difficulty is to consider the case when the configuration p is generic, which means
that all the coordinates of all the points of the configuration p are algebraically independent over the
rational numbers. In other words, the only polynomial with integer coefficients that is satisfied by
these coordinates is the zero polynomial. This is something of an overkill, especially in the case of
rigidity, since a reasonable finite set of polynomial equations, given by certain determinants, can be
used in many instances. In the case of global rigidity, the equations that would determine the “bad”
cases for global rigidity are much harder to determine.

With the concept of generic in mind, we define a graph G to be generically rigid in Rd if G(p)
is rigid at all generic configurations p, and generically globally rigid in Rd if G(p) is globally rigid at
all generic configurations p [3,4]. It is well-known that rigidity is a generic property [30] and recent
results in [4,8] prove that global rigidity is also a generic property for graphs in each dimension.

Two natural necessary conditions, observed by Hendrickson [10], for generic global rigidity in Rd

are that the graph G be (d + 1)-vertex-connected, and that, for a generic configuration p, G(p) be
redundantly rigid, which means that G(p) is rigid and remains rigid after the removal of any edge
(Theorem 2 below).

For d = 2, Berg and Jordán [2] and Jackson and Jordán [11] confirm, using [4], that Hendrickson’s
necessary conditions are sufficient for generic global rigidity. For d = 3, Connelly [3] showed that
the complete bipartite graph K5,5 is generically redundantly rigid and 5-vertex-connected, but not
generically globally rigid, showing that Hendrickson’s necessary conditions are not sufficient. Similar
examples exist for all d ! 3, see [3,6]. Furthermore, Frank and Jiang [6] show that, for d ! 5, there are
graphs containing a complete graph Kd+1 as a subgraph that are not generically globally rigid in Rd ,
even though they satisfy Hendrickson’s necessary conditions.

So it is natural to search for classes of graphs where generic global rigidity can be determined
combinatorially in line with Hendrickson’s necessary conditions, without recourse to matrix calcu-
lations for each graph, as in [4]. At a workshop at BIRS in 2008, two of the authors and Meera
Sitharam conjectured that generic body-and-bar frameworks would give rise to one such class. In-
formally, a d-dimensional body-and-bar framework consists of disjoint full-dimensional rigid bodies
connected by bars in such a way that the attachment points of the bars on the bodies are pairwise
distinct, see e.g. [24–26,30] for more details. In this paper we treat these frameworks as special bar-
and-joint frameworks and work with the following equivalent definition.

A d-dimensional body-and-bar framework is a bar-and-joint framework G(p) in which the vertex set
of G is partitioned into pairwise disjoint complete graphs (the bodies) and the remaining edges (bars),
connecting these bodies, are pairwise disjoint. A graph with this structure is called a body–bar graph.
The body-and-bar framework is generic if the configuration p is generic (that is, all of the vertices
of all of the bodies are generic). We may record the connections between the bodies in a single
multigraph H (without loops, but with multiple edges allowed), where each body is represented as
a vertex of H and each bar connecting different bodies is represented as an edge. (Conversely, each
multigraph H induces a body–bar graph in a natural way, see Section 3.)
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The following is our main result (see also Theorem 16).

Theorem 1. A body-and-bar framework is generically globally rigid in Rd if and only if it is generically redun-
dantly rigid in Rd.

This characterization leads to a polynomial time combinatorial algorithm to determine the generic
global rigidity of body–bar frameworks in any dimension. Previous results of Tay [24,25] showed that
generic rigidity (and hence generic redundant rigidity) of body-and-bar frameworks in Rd , for all
d ! 1, can be determined efficiently. We shall not rely on these earlier results in this paper, though
they inspired the original conjecture.

For the proofs of previous results [2,11], and for our main theorem here, we rely on several key
techniques. In [4], a sufficient condition is given in terms of the rank of a stress matrix (to be defined
later), that combines with (infinitesimal) rigidity at a generic point to imply generic global rigidity
in any specific dimension (see also [5]). To apply this result, certain key inductive constructions have
been shown to preserve both the maximal rank of the corresponding stress matrix, and the infinites-
imal rigidity. It is also necessary that these inductive constructions generate all members of the class
from a generically globally rigid seed (a small complete graph).

These results have significant theoretical interest as steps towards a full theory of generic global
rigidity of arbitrary frameworks. There are also a wide range of applications for the algorithms that
detect global rigidity, such as localization in wireless sensor networks [1,13], molecular conforma-
tion [31], and stability of molecules. We return to possible applications of our main theorem in
Section 6.

We also note that by the results in [5], graphs which are generically globally rigid in Rd are also
generically globally rigid in spherical and hyperbolic d-space. Rd is the classical sample of a general
class of metrics over which rigidity and generic global rigidity results are invariant.

2. Prior results on global rigidity and infinitesimal rigidity

Hendrickson [10] proved two key necessary conditions for the global rigidity of a bar-and-joint
framework at a generic configuration. These properties were previously conjectured by Whiteley [29].
We say that G(p) is redundantly infinitesimally rigid in Rd if removing any edge of G(p) results in an
infinitesimally rigid framework. (We refer the reader to [30] for the definition of infinitesimal rigidity
and the rigidity matrix of a framework, and for more details on the rigidity of different kinds of
frameworks.)

Theorem 2. (See Hendrickson [10].) Let G(p) be a globally rigid generic bar-and-joint framework in Rd. Then
either G is a complete graph on at most d + 1 vertices, or

(i) the graph G is (d + 1)-vertex-connected, and
(ii) the framework G(p) is redundantly infinitesimally rigid in Rd.

Note that redundant rigidity is a generic property. Thus the conditions of Theorem 2 are necessary
for generic global rigidity.

One critical technique used for proving global rigidity of frameworks uses stress matrices. This
technique is at the core of the proof that global rigidity is a generic property, as well as some specific
inductive techniques (below).

This stress matrix approach builds on the fact that any globally rigid generic framework is de-
pendent (redundant), with an equilibrium stress ω which is non-zero on all edges. Let G(p) be a
framework in Rd with G = (V , E). Recall that an equilibrium stress on G(p) is an assignment of scalars
ωi j to the edges such that for each i ∈ V

∑

j|i j∈E

ωi j(pi − p j) = 0

This can also be visualized as a linear dependence of the rows of the rigidity matrix [30].
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Fig. 1. An edge with an equilibrium stress (a) can be subdivided with a modified stress on the parts (b) and d − 1 edges
added (c). The result is an edge split which preserves infinitesimal rigidity and a stress matrix of full rank.

Given a stress, there is an associated |V | × |V | symmetric matrix Ω , the stress matrix such that for
i $= j, the i, j entry of Ω is −ωi j , and the diagonal entries for i, i are

∑
j $=i ωi j . Here we follow the

convention that an equilibrium stress can be extended to non-adjacent pairs i, j by putting ωi j = 0.
Note that all row and column sums are now zero. It is easy to see that the rank of Ω is at most
|V | − d − 1. We say that Ω is of full rank if its rank is equal to |V | − d − 1. Connelly has developed a
number of properties of these stress matrices.

Theorem 3. (See Connelly [3,4].) Let G(p) be a framework in Rd, where p is a generic configuration. If G(p) has
an equilibrium stress where the rank of the associated stress matrix Ω is |V |−d−1 and G(p) is infinitesimally
rigid, then G(p) is globally rigid in Rd.

Let {i, j} be a bar (edge) in framework G(p). The subdivision operation removes the bar {i, j} and
adds a new vertex k and two new bars {i,k} and {k, j} in such a way that the position pk of the
new vertex k is on the line through pi and p j , but not at pi and p j (Fig. 1(a), (b)). Suppose that
(p j − pi) = α(pk − pi) for some parameter α $= 0,1. It is easy to check that if there is an equilibrium
stress ω on G(p) then we obtain an equilibrium stress ω∗ on the subdivided framework by setting
ω∗

ik = 1
1−α ωi j , ω∗

kj = 1
α ωi j , and ω∗

i j = 0. The stresses on the other bars are unchanged. The next lemma
shows that by subdividing a stressed bar and adjusting the equilibrium stress as above, we increase
the rank of the stress matrix by one. We shall use this lemma later with α = 1

2 .

Lemma 4. Let ω be an equilibrium stress on the d-dimensional framework G(p) and let Ω be the associated
stress matrix. Suppose that for bar {i, j} we have ωi j $= 0 and let G∗(p∗) be obtained from G(p) by subdividing
{i, j} with parameter α $= 0,1. Then rankΩ∗ = rank Ω + 1, where Ω∗ is the stress matrix associated with the
equilibrium stress ω∗ on G∗(p∗).

Proof. By scaling ω, if necessary, we may suppose that ωi j = 1. Then ω∗
ik = 1

1−α , ω∗
kj = 1

α , and ω∗
i j = 0.

Thus the new stress matrix Ω∗ is obtained from Ω by adding a new row and new column of zeros
for vertex k, and then adding the following numbers to the entries of the row of i (resp. j,k) in the
columns of i, j, and k: (−1 + 1

1−α ,1,− 1
1−α ) (resp. (1,−1 + 1

α ,− 1
α ) and (− 1

1−α ,− 1
α , 1

1−α + 1
α )).

Observe that Ω∗ can also be obtained from Ω by adding a new row and new column of zeros
for vertex k, then adding the numbers (− 1

1−α ,− 1
α , 1

1−α + 1
α ) to the entries of the row of k in the

columns of i, j, and k (which increases the rank by 1, since 1
1−α + 1

α $= 0), and then adding −αRk
to the row of i and −(1 − α)Rk to the row of j, where Rk denotes the row of k. This implies the
lemma. !

Note that for d ! 2 a subdivided framework in Rd is never infinitesimally rigid. After subdivision
it is necessary to add some additional bars to rigidify it infinitesimally (Fig. 1(c)).

Recall that, given a graph G with edge e = {i, j}, and d −1 additional vertices 1, . . . ,d − 1, the edge
split on e in Rd is the addition of a new vertex k, the removal of e, and the insertion of d + 1 new
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edges {i,k}, {k, j}, {k,1}, . . . , {k,d − 1}. The corresponding geometric operation on G(p) subdivides the
edge e and inserts d − 1 new bars from the new vertex positioned at pk . Thus we can extend a stress
ω on G(p) to the edge split framework G∗(p∗) by using ω∗ on the subdivided edge e, and making
the stresses 0 on the edges {k,1}, . . . , {k,d − 1}. We say that the edge split on e = {i, j} is a general
position edge split on e if the vectors pk − pi,pk − p j,pk − p1, . . . ,pk − pd span Rd (Fig. 1(c)). If p is
generic, then the spanning condition will hold automatically. Even though some of the new edges
have 0 stress, the following is true.

Lemma 5. (See Tay and Whiteley [27].) Let G(p) be an infinitesimally rigid framework in Rd and let e be an
edge of G. Then a general position edge split on e generates a new graph G∗ and an extended configuration
G∗(p∗) which is infinitesimally rigid in Rd.

Note also that since the new vertex pk lies on the line between pi and p j , the configuration p∗ is
not generic, even if p is. There is an elementary way to connect the rank calculations for particular
configurations to the property of global rigidity of a framework G(p) at a generic configuration p. This
is implicit in [4] and explicit in [5].

Lemma 6. Suppose that G(p) is an infinitesimally rigid framework in Rd and ω is an equilibrium stress on G(p)
with a stress matrix Ω of full rank |V | − d − 1. Then there is a neighborhood Up in the space of configurations
in Rd such that if q ∈ Up , then G(q) is infinitesimally rigid in Rd and has an equilibrium stress ω′ with a stress
matrix Ω ′ of full rank |V | − d − 1. Furthermore, if G is generically redundantly rigid and q ∈ Up is a generic
configuration then ω′ can be chosen so that ω′

i j $= 0 on all edges i j of G.

Putting all these propositions together we get the following, which was the original method to
imply generic global rigidity for bar frameworks [4]:

(i) Suppose that G(p) is an infinitesimally rigid framework in Rd with a stress ω whose associated
stress matrix is of full rank, and let e be an edge with non-zero stress.

(ii) Then a general position edge split on e in Rd generates a new framework G∗(p∗) which is in-
finitesimally rigid and has a stress ω∗ with a stress matrix of full rank.

(iii) After moving to a nearby generic point we may conclude that G∗ is generically globally rigid
in Rd .

We shall use this argument several times to verify generic global rigidity, for edge splitting as well
as for other operations which preserve infinitesimal rigidity and a stress matrix of full rank.

We note that for the plane Jackson, Jordán and Szabadka [16] have an alternative proof that
edge-splitting preserves generic global rigidity. This proof has recently been generalized to all di-
mensions [23].

3. An inductive construction of redundantly rigid body–bar graphs

Let H = (V , E) be a multigraph with minimum degree at least one. The body–bar graph induced
by H , denoted by G H , is the graph obtained from H by replacing each vertex v ∈ V by a complete
graph B v (a ‘body’) on dH (v) vertices and replacing each non-loop edge uv by an edge (a ‘bar’)
between Bu and B v in such a way that the bars are pairwise disjoint. (We use dH (v) to denote the
degree of vertex v in H . A loop on v contributes to dH (v) by two.)

We shall prove our main result by an inductive argument which relies on a combinatorial result of
Frank and Szegő [7]. Their result, stated as Theorem 7 below, provides an inductive construction for
the multigraphs H that induce redundantly rigid body–bar graphs G H in Rd . By using the operations
of the previous section we shall show how to construct an infinitesimally rigid framework G H (p̂) with
a full rank stress matrix, following the inductive construction of the underlying multigraph H . This
will imply that G H is generically globally rigid by Lemma 6 and Theorem 3.
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Fig. 2. A 6-split on 4 edges. The chosen edges (a), the pinch (b), (c), and the addition of 2 edges (d).

Let H = (V , E) be a multigraph. For a partition P of V let E H (P) denote the set, and eH (P) the
number of edges of H connecting distinct members of P . We say that H is highly m-tree-connected if

eH (P) ! m(t − 1) + 1, (1)

for all partitions P = {X1, X2, . . . , Xt} of V with t ! 2. Note that a theorem of Nash-Williams [20] and
Tutte [28] implies that H satisfies (1) if and only if H − e contains m edge-disjoint spanning trees for
all e ∈ E .

The operation pinching k edges (with vertex z) subdivides k designated edges and then contracts the
k subdividing vertices into a new vertex z.

Theorem 7. (See Frank and Szegő [7].) A multigraph H is highly m-tree-connected if and only if H can be
obtained from a vertex by repeated applications of the following operations:

(i) adding an edge (possibly a loop),
(ii) pinching k edges (1 " k " m − 1) with a new vertex z and adding m − k new edges connecting z with

existing vertices.

We call the combined operation of (ii), consisting of pinching and edge addition, an m-split on k
edges (Fig. 2). We shall prove (Lemma 14) that if a body–bar graph G H induced by H is generically
redundantly rigid in Rd then H is highly

(d+1
2

)
-tree-connected. Thus we shall need Theorem 7 when

m =
(d+1

2

)
for each d ! 1. With this in hand, the induction on H from Theorem 7 can be applied to

generate globally rigid generic realizations of G H .

4. Body insertion

Here we assemble several key lemmas needed for the proof of the main theorem.
We want to show that the combinatorial operation of a

(d+1
2

)
-split on k edges in H can be repli-

cated as a geometric operation on the induced body–bar framework, which adds a new body and
preserves global rigidity at generic configurations. To do this, we need steps that preserve the two
properties of infinitesimal rigidity and a stress matrix of full rank. We also need to preserve the
structure of a body–bar framework. In particular, we need to make sure the new body inserted is
connected to distinct vertices in designated bodies, as prescribed by the split operation in H .

We will achieve this geometric goal of splitting k edges in four steps in all dimensions d:

(i) constructing a generically infinitesimally rigid graph (body) Bd,k on k vertices, isostatically at-
tached to a complete graph of the appropriate size (Fig. 3);

(ii) geometrically grafting this small structure onto the previous framework across shared vertices,
with the new vertices laid onto the midpoints of the edges to be split, making a larger infinites-
imally rigid framework (Figs. 4, 5(a));

(iii) using simple local exchange operations based on collinear triangles to replace the edges to be
split by a pair of split edges so that the resulting framework remains infinitesimally rigid and
has a full rank stress matrix (Fig. 5(b), (c));
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Fig. 3. Creating an inner isostatic body Bd,k on 1 " k " d vertices, attached to an outer complete graph, illustrated for d = 3.
The initial case has a d-valent addition (a) on d attachment vertices; the next case uses a second d-valent addition (b) now
using d − 1 more attachments (b), and a third example applies an additional d-valent addition with d − 2 new attachments
forming a triangle body (c).

(iv) applying additional edge splits to separate some of the attachment edges at the new body so that
we recover the body–bar structure (Fig. 6).

The next subsections will describe these steps in detail. There are some minor differences depend-
ing on whether k is small (1 " k " d) or large (d + 1 " k "

(d+1
2

)
− 1), which will be indicated in each

case.

4.1. Constructing the new body

For each pair of integers d,k with 1 " k "
(d+1

2

)
− 1 we construct a generically rigid graph Bd,k

on k vertices (the initial new body) with vertex set W , which will be attached to a complete graph
on vertex set R in such a way that the combined framework Cd,k is also generically rigid. The size
of vertex set R (along which the new body will be grafted to the previous one) is dk −

(k
2

)
, when

1 " k " d, and
(d+1

2

)
, when d + 1 " k "

(d+1
2

)
− 1.

We begin with the construction of the initial body when 1 " k " d. As a key tool, we recall a
simple operation which will be used repeatedly, see e.g. [30, Lemma 11.1.1]. Given a graph G = (V , E),
the vertex d-addition operation adds a new vertex v0 and d new edges v0 v1, . . . , v0 vd for some vi ∈ V ,
1 " i " d. The corresponding geometric operation on G(p) adds a new vertex positioned at p0 and
inserts d new bars from p0 to pi , 1 " i " d.

Lemma 8 (Vertex addition lemma). Let G(p) be a d-dimensional framework and let G ′(p) be obtained
from G(p) by a vertex d-addition. If p0,p1, . . . ,pd are in general position in d-space then rank R(G ′,p) =
rank R(G,p) + d, where R(G,p) is the rigidity matrix of the framework.

Fig. 3 illustrates the construction in the case when 1 " k " d. For k = 1 we start with one inner
d-valent vertex w1 added to a complete graph on d vertices. At each additional step k, we add a
d-valent vertex wk attached to the k − 1 previous inner vertices wi , i < k, and to d − k + 1 new
attachment vertices r j (added to the outer body making a larger complete graph). At each vertex wi
we designate the first edge, connecting wi to R , as its primary attachment edge, and the remaining
d − k as secondary. If we reach k = d, we add a vertex wd connected to the d − 1 inner vertices and
with a single primary attachment edge to one new vertex on the outer complete graph forming Cd,d .

Next we describe the construction of Bd,k when d + 1 " k "
(d+1

2

)
− 1. We begin with Cd,d , as

defined above, which has d vertices in the body (on vertex set Wd = {w1, w2, . . . , wd}) attached to a
complete graph on vertex set R with |R| =

(d+1
2

)
. Then we add k − d additional vertices wd+1, . . . , wk

by edge split operations, splitting secondary edges connecting the set Wd and R , so that each ad-
ditional new inner vertex becomes connected to exactly one vertex in R (the outer part of the split
edge) as its primary attachment edge, and also connected to d − 1 other inner vertices in Wd . In the
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Fig. 4. Given two frameworks G1(q1) and G2(q2) with corresponding subsets of vertices U1 and U2 (a), we can graft G2(q2)

onto G1(q1) by identifying vertices in U1 and U2 and deleting all edges among U2 in G2 (b).

final graph Cd,k the body has vertex set W = {w1, w2, . . . , wk}, while the number of edges from W
to R remains as

(d+1
2

)
. Lemmas 5 and 8 imply:

Lemma 9 (Body construction). The graphs Bd,k and Cd,k are both generically infinitesimally rigid in Rd for all
pairs d,k with 1 " k "

(d+1
2

)
− 1. The number of vertices of Bd,k is equal to k. The number of vertices in the

outer body (which is equal to the number of edges from W to R) is equal to dk −
(k

2

)
, when 1 " k " d, and(d+1

2

)
, when d + 1 " k "

(d+1
2

)
− 1.

Note that there is exactly one primary attachment edge to the outer complete graph at each inner
vertex wi .

4.2. Grafting

We now need to ‘graft’ the body Bd,k and its attachments onto an infinitesimally rigid bar-and-joint
framework with k designated edges to be pinched. As the grafting process is general, and geometric,
we present it in a corresponding general form.

Let G1(q1) and G2(q2) be two d-dimensional frameworks and let V 1 = {w1, w2, . . . , wt} ⊆ V (G1)
and V 2 = {z1, z2, . . . , zt} ⊆ V (G2) be designated vertex sets of the same cardinality satisfying
q1(wi) = q2(zi) for 1 " i " t . By grafting G2(q2) onto G1(q1) along V 1, V 2 we mean the operation
which creates a new framework (on a new graph) H(q) by deleting the edges of G2 connecting ver-
tices in V 2 and identifying wi and zi for 1 " i " t . See Fig. 4.

Let G(p) be a d-dimensional framework. For two non-adjacent vertices u, v ∈ V (G) we say that uv
is an implied edge of G(p) if rank R(G,p) = rank R(G + uv,p). The closure of G(p) is the framework
obtained from G(p) by adding all the implied edges.

Lemma 10 (Grafting). Let G1(q1) and G2(q2) be infinitesimally rigid d-dimensional frameworks and let H(q)
be the framework obtained by grafting G2(q2) onto G1(q1) along V 1, V 2 , where V 1 ⊆ V (G1) and V 2 ⊆
V (G2) with |V 1| = |V 2| = t ! d. If the points q1(wi) = q2(zi), 1 " i " t, are in general position in Rd then
H(q) is infinitesimally rigid.

Proof. Let H = (U , F ). We shall prove that for each pair u, v ∈ U the edge uv is in the closure of H(q),
which will imply that rank R(H,q) = rank R(K |U |,q), from which it follows that H(q) is infinitesimally
rigid. (Here K |U | denotes the complete graph on |U | vertices.)

Since G1(q1) is infinitesimally rigid, for each pair u, v ∈ V (G1) the edge uv is an implied edge (of
G(q1) and hence) of H(q). Since G2(q2) is infinitesimally rigid, it follows that for each pair u, v ∈
V (G2) the edge uv is implied in H(q). Now consider a pair u, v with u ∈ V (G1) − V 1 and v ∈
V (G2) − V 2.

We shall use the fact that if X is a set of d + 1 points in general position in Rd and y is another
point then there is a set X ′ ⊂ X ∪ {y} of d + 1 points with y ∈ X ′ in general position.

First suppose that the points corresponding to the vertices of V 2 ∪ {v} contain a set X of d + 1
points in general position. This is the case when t ! d + 1, or t = d and q2(v) is not in the hyperplane
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Fig. 5. Given a framework G H (p) with k designated edges, we can graft on Cd,k(p′) so that the new vertices wi are placed
onto the designated edges (a). We can then use triangle exchanges (b) to make these new vertices effectively split the original
designated edges (c).

spanned by the points q2(zi), 1 " i " d, of V 2. By choosing a set X ′ ⊂ X ∪ {q2(v)} of d + 1 points with
q2(v) ∈ X ′ in general position and applying Lemma 8 we obtain that each edge connecting a vertex
in V (G1) and v is implied, in particular, uv is implied in H(q).

It remains to consider the case when t = d and q2(v) is in the hyperplane L spanned by the
points q2(zi), 1 " i " d, of V 2. The infinitesimal rigidity of G2(q2) implies that v has a neighbor v ′

in G2 for which q2(v ′) is not in L. Lemma 8 implies that each edge connecting a vertex in V (G1)
and v ′ is implied. Then we may use the general position argument above, by choosing X to be the
points corresponding to the vertices of V 2 ∪ {v ′}, and Lemma 8 to deduce that uv is an implied edge
in H(q). !

We are ready to graft the framework on Cd,k onto a selected framework G H (p) with the k edges
u1 v1, . . . , uk vk to be pinched. For each of the k inner vertices wi of Cd,k there is a unique primary
attachment edge incident with it. Let ri , 1 " i " k, denote the other end-vertex of the primary attach-
ment edge incident with wi and let rk+1, . . . , rs denote the remaining vertices of attachment of the
inner body, where s = dk −

(k
2

)
, when 1 " k " d, and s =

(d+1
2

)
, when d + 1 " k "

(d+1
2

)
− 1. Suppose

that S is a set of s designated vertices of G H with ui ∈ S and vi /∈ S , 1 " i " k.
Let p′ be a configuration for Cd,k for which the vertices of the outer complete graph are on top

of the s designated vertices of G H (p) with p′(ri) = p(ui) for 1 " i " k, and with each p′(wi) at the
midpoint of the edge ui vi , 1 " i " k.

We shall graft Cd,k(p′) onto G H (p) along S, R . See Fig. 5. We call this graft and placement placing
Cd,k onto the k edges and s vertices. The set S of vertices will be determined by the split operation on
H , when we apply the next lemma.

Lemma 11 (Placing the body). Given an infinitesimally rigid generic framework G H (p) with k designated edges
u1 v1, . . . , uk vk and a set S of s distinct designated vertices with ui ∈ S and vi /∈ S, 1 " i " k, placing Cd,k
onto the k edges and s vertices produces an extended infinitesimally rigid framework Ḡ H (p̄).

Proof. Since G H (p) is generic, it follows that Cd,k(p′) is also a generic framework. (This holds because
there is a rational homeomorphism between the configuration of points ui, vi and the configuration,
where the vi are replaced by the wi , the midpoints.) Thus Cd,k(p′) is infinitesimally rigid by Lemma 9.

Since G H (p) is generic, the points of S are in general position. We also have |S| ! d. Thus, by
Lemma 10, the grafted framework Ḡ H (p̄) is infinitesimally rigid. !

4.3. Triangle exchange

The next step is to modify Ḡ H (p̄) so that the vertices wi split the k edges, preserving infinites-
imal rigidity and raising the rank of the stress matrix by k, for the k new vertices. This is done by
exchanges on collinear triples of vertices ui, wi, vi , replacing the bars ui wi and ui vi with the two
bars ui wi and wi vi . We call this operation a triangle exchange (on the collinear pair ui wi, ui vi ) and
the resulting framework G∗

H (p∗) the inserted framework.
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Lemma 12 (Insertion of body). Let G H (p) be an infinitesimally rigid framework with a full rank stress matrix
with a non-zero stress on all edges and let Ĝ H (p̂) be obtained from G H (p) by placing Cd,k on k edges ui vi
and s vertices. Suppose that G∗

H (p∗) is obtained from Ḡ H (p̄) by k triangle exchange operations on the collinear
pairs ui wi, ui vi , 1 " i " k. Then

(i) G∗
H (p∗) is infinitesimally rigid;

(ii) G∗
H (p∗) has a full rank stress matrix.

Proof. We have placed the grafted framework so that ui, wi, vi are collinear, 1 " i " k.
(i) The observation that a collinear triangle is a minimally dependent framework (circuit) in all

dimensions (Fig. 5(b)) is equivalent to saying that the rows for any two of the bars generate the row
for the third bar, by row reduction in the rigidity matrix. In turn, this implies that exchanging in wi vi
to replace the edge ui vi , given the presence of ui wi , preserves the rank of the rigidity matrix and
therefore preserves the infinitesimal rigidity (Fig. 5(c)).

(ii) Given the non-zero stress on ui vi in G H (p), an exchange operation in wi vi to replace ui vi
produces an extended self-stress (Fig. 5(b), (c)). Moreover, by the same argument that was used in
Lemma 4 for subdividing an edge, this increases the rank of the stress matrix by one for each of the
k added vertices wi . !

4.4. Separating attachments

At this point G∗
H is not yet a body–bar graph: some vertices wi in the new body on W are

connected to at least two vertices that belong to other bodies. Since in a body–bar graph each vertex
is connected to at most one other body, we need to separate the attachments. The following lemma
shows how to get rid of the secondary attachment edges and also confirms that the final body–bar
structure is globally rigid for generic configurations.

Lemma 13 (Separating attachments). Let H be a multigraph for which the body–bar graph G H is generically
rigid in Rd. Let p be a generic configuration for which G H (p) has an equilibrium stress ω with a stress ma-
trix of full rank. Suppose that we have a set of designated edges ui vi , 1 " i " k, and non-negative integers
s1, s2, . . . , sn assigned to the n bodies of G H , where 1 " k "

(d+1
2

)
− 1 and

∑n
$=1 s$ =

(d+1
2

)
− k. Then we

can construct an extended body–bar graph G H∗ and an extended generic configuration p̂ with one added body
b∗ on

(d+1
2

)
+ k vertices, with si new vertices added to each existing body bi , 1 " i " n, and by replacing

the k designated edges by
(d+1

2

)
+ k disjoint edges connecting b∗ to the added vertices and to vertices ui, vi ,

1 " i " k, such that

(i) G H∗(p̂) is infinitesimally rigid, and
(ii) G H∗(p̂) has a stress matrix of full rank.

Proof. It follows from Theorems 2 and 3 that G H (p) is redundantly rigid. Thus, by Lemma 6, we
may suppose that ω is non-zero on all edges. We start the construction of G H∗ by extending each
body b$ by s$ new vertices. We do this by a sequence of s$ edge splitting operations on stressed
edges within b$ . This way we can maintain a stress matrix of full rank and, since p is generic, we
can also preserve infinitesimal rigidity, by Lemmas 4 and 5. These new vertices are labeled as r j ,
k + 1 " j "

(d+1
2

)
.

Then we move to a nearby generic configuration and apply Lemma 6 to obtain an initial infinites-
imally rigid framework G ′

H (p̂′) with an equilibrium stress with a full rank stress matrix, such that
every edge has a non-zero stress. We have two cases to consider.

(i) First suppose that 1 " k " d. Apply Lemma 12 to the resulting framework, by using vertices
u1, u2, . . . , uk and the first dk −

(k+1
2

)
("

(d+1
2

)
−k) vertices r j as designated vertices, to obtain an ini-

tial infinitesimally rigid framework G∗
H (p̂) with all new vertices placed on stressed edges. By Lemma 4

this implies that G∗
H (p̂) also has an equilibrium stress with a full rank stress matrix. Moving to a

generic configuration preserves all of these properties, and ensures that every edge has a non-zero
stress by Lemma 6.
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Fig. 6. Given an extended framework with a small body inserted on k edges (a) we separate the secondary attachments by edge
splits (illustrated for k = 2, d = 3).

Fig. 7. Given the inserted body with > d vertices, we separate the attachments by edge splits (a), (b), (c), until no two attach-
ments share a vertex on the body.

Note that after the grafting step we have dk −
(k

2

)
− k secondary attachments incident with W ,

which grows to dk−
(k

2

)
after the k triangle exchange operations. Now we can apply a further sequence

of edge splits on secondary attachment edges to separate these attachments at the new body and
make sure that each vertex on the new body is connected to other bodies by precisely one bar.
See Fig. 6(b), (c) for some stages of this procedure. In each split, we connect the new vertex to as
many other wi as possible and create additional secondary attachments as necessary. After the first
d − k steps, we will have d inner vertices,

(d+1
2

)
− d + k secondary attachment edges, and

(d+1
2

)
+ k

attachment vertices. We continue to split on secondary attachment edges, reducing the number of
secondary attachment edges at each further step without creating new attachment vertices. We will
end with

(d+1
2

)
+ k inner vertices wi (Fig. 6(d)).

Each of these edge splits is on a stressed edge, provided we continue to move each new vertex wi ,
i > k, to a generic position. Therefore, this sequence of splits preserves both key properties: (i) the
infinitesimal rigidity; and (ii) the full rank stress matrix.

(ii) Next suppose d + 1 " k "
(d+1

2

)
− 1. As in the previous case, we apply a sequence of edge

splits to eliminate the secondary attachment edges (Fig. 7). Note that after the grafting step we have(d+1
2

)
−k secondary attachments incident with W , which grows to

(d+1
2

)
after the k triangle exchange

operations. Thus we have
(d+1

2

)
secondary attachment edges and an inserted body on k vertices, when

we start this phase. To eliminate all secondary attachment edges we add
(d+1

2

)
additional vertices to

the new body, by using edge splits, which gives
(d+1

2

)
+ k in total, as required. At each stage the

framework is infinitesimally rigid, and has an equilibrium stress with a stress matrix of full rank by
Lemmas 4 and 5. We conclude that the final framework G H∗(p̂) is infinitesimally rigid with a full rank
stress matrix, as required.

In both cases we can further extend the added body by edge insertions to make it a complete
graph on its

(d+1
2

)
+k vertices. Hence the constructed graph G H∗ is a body–bar graph which is induced

by a multigraph H∗ , obtained from H by a
(d+1

2

)
-split on k edges. !
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5. Globally rigid body–bar graphs

5.1. Redundantly rigid implies highly tree-connected

First we give a direct proof, in terms of bar-and-joint frameworks, for the fact that if a body–bar
graph G H is redundantly rigid then H is highly tree-connected. It can also be deduced from Tay’s
characterization of generically rigid body–bar frameworks [24,25].

Lemma 14. Let H = (V , E) be a multigraph with |V | ! 2 and suppose that the body–bar graph G H induced
by H is generically redundantly rigid in Rd. Then H is highly

(d+1
2

)
-tree-connected.

Proof. For a contradiction suppose that eH (P) "
(d+1

2

)
(t −1) for a partition P = {X1, X2, . . . , Xt} of V

with t ! 2. Let Yi = ∪{V (B v): v ∈ Xi}, for 1 " i " t , and let Q = {Y1, Y2, . . . , Yt} be the corresponding
partition of V (G H ). The redundant rigidity of G H implies that each vertex of G H has degree at least
d + 1. Hence |V (B v)| ! d + 1 and also |Yi | ! d + 1 for all v ∈ V and 1 " i " t . Observe that eG H (Q) =
eH (P) $= ∅.

Let S ⊆ E(G H ) be a maximal set of independent edges in G H , i.e. a base in the d-dimensional
generic rigidity matroid of G H . Since G H is rigid and G H has more than d + 1 vertices, we have
|S| = d|V (G H )| −

(d+1
2

)
. Thus, by using the fact that each subset Y ⊆ V (G H ) with |Y | ! d + 1 induces

at most d|Y | −
(d+1

2

)
edges of S , we obtain

d
∣∣V (G H )

∣∣ −
(

d + 1
2

)
= |S| "

t∑

1

(
d|Yi | −

(
d + 1

2

))
+ eG H (Q)

= d
∣∣V (G H )

∣∣ −
(

d + 1
2

)
t + eH (P) " d

∣∣V (G H )
∣∣ −

(
d + 1

2

)
.

Thus we have equality everywhere. In particular, for all edges e ∈ EG H (Q) and all bases S we must
have e ∈ S . This implies that e is not redundant, and hence G H is not redundantly rigid, a contradic-
tion. Hence each partition of V satisfies (1) and the lemma follows. !

5.2. Highly tree-connected implies a globally rigid realization

Next we show by induction, using the body insertion lemmas, that highly tree-connected graphs
have globally rigid generic realizations.

Lemma 15. Let H = (V , E) be a highly
(d+1

2

)
-tree-connected multigraph. Let G H = Kd+2(l+1) , when |V | = 1

and E is a set of l ! 0 loops, and otherwise let G H be the body–bar graph induced by H. Then there exists an
infinitesimally rigid realization G H (p) of G H in Rd with an equilibrium stress ω for which the associated stress
matrix Ω has rank n − d − 1, where n = |V (G H )|.

Proof. The proof is by induction on |V | + |E|. In the base case, when |V | = 1 and E = ∅, G H is a
complete graph on d + 2 vertices. In this case it is easy to construct an infinitesimally rigid realization
G H (p) with an equilibrium stress ω for which the associated stress matrix has full rank.

Now consider a highly
(d+1

2

)
-tree-connected multigraph H = (V , E) and suppose that the lemma

holds for all highly
(d+1

2

)
-tree-connected multigraphs H ′ with |V (H ′)|+|E(H ′)| < |V (H ′)|+|E(H ′)|. By

Theorem 7 H can be obtained from a smaller highly
(d+1

2

)
-tree-connected multigraph H ′ by adding

an edge or by a
(d+1

2

)
-split on k edges, for some 1 " k "

(d+1
2

)
− 1. By induction, there exists an

infinitesimally rigid realization G H ′(p̄) of G H ′ with an equilibrium stress ω for which the associated
stress matrix Ω has rank n′ − d − 1, where n′ = |V (G H ′ )|. By Lemma 6 we may suppose that p̄ is
generic and ω is non-zero on all edges.
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First suppose that H is obtained from H ′ by adding a new edge uv , possibly a loop. Then we
may construct a realization G H (p) from G H ′(p̄) by performing two edge splits within Bu and B v ,
respectively, which create two new vertices of degree d+1, followed by edge additions, which connect
the new vertices and which make the two enlarged bodies complete. Note that the definition of G H ′

and the assumption on H ′ implies that each body in G H ′ has at least d + 1 vertices. These operations
preserve infinitesimal rigidity and the property of having a stress matrix of full rank by Lemmas 4
and 5. Thus the lemma follows by Lemma 6.

Next suppose that H is obtained from H ′ by a
(d+1

2

)
-split on k edges. Lemma 13 confirms that

there is an extended framework G H (p) which is infinitesimally rigid and has a stress matrix of full
rank. !

5.3. The main theorem

We can now assemble the pieces to give a full proof of the main theorem.

Theorem 16. Let H = (V , E) be a multigraph with |V | ! 2 and |E| ! 2 and let G H be the body–bar graph
induced by H. Let d ! 1 be an integer. Then the following are equivalent:

(a) G H is generically globally rigid in Rd,
(b) G H is generically redundantly rigid in Rd,
(c) H is highly

(d+1
2

)
-tree-connected.

Proof. Since |V | ! 2 and |E| ! 2, it follows that G H is not a complete graph. Thus (a) → (b) follows
from Theorem 2.

(b) → (c) follows from Lemma 14.
(c) → (a) follows from Lemma 15 and Theorem 3. !

6. Further remarks

6.1. Algorithmic implications

Theorem 16 gives rise to a polynomial time algorithm to determine whether a body–bar graph
is generically globally rigid in Rd . This follows from the fact that, as we noted earlier, a multigraph
H is highly m-tree-connected if and only if H − e contains m edge-disjoint spanning trees for all
e ∈ E(H). Thus efficient tree-packing algorithms can be used to test whether a given multigraph is
highly m-tree-connected. We refer the reader to [22, Chapter 51] for a complexity survey for tree
packing algorithms.

By using similar techniques one can also compute the maximal highly m-tree-connected subgraphs
of H . The vertex sets of these subgraphs form a partition of V (H). See [14] for more details (where
these subgraphs are called the m-superbricks of H).

Another algorithmic observation is that one can easily test whether a given graph G is a body–bar
graph. To see this suppose, for simplicity, that each body has at least three vertices. Then a pair u, v of
vertices belongs to the same body if and only if they are adjacent and they have a common neighbor.
The following method is based on this fact: consider the subgraph H of G consisting of those edges
uv of G for which u and v have a common neighbor in G . It follows that G is a body–bar graph if
and only if H is a collection of disjoint complete graphs covering V (G) and the complement of H in
G is a matching.

6.2. Globally linked pairs

Given the characterization of globally rigid graphs in the plane, the methods have recently been
extended to characterize globally linked pairs of vertices in some classes of graphs in R2 [16,17].
These are pairs of vertices whose distance is the same in all frameworks which are equivalent to any
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given generic framework of the graph. One can ask the analogous question for body–bar graphs G H
in Rd . We conjecture that a pair of vertices is globally linked in G H if and only if there is a globally
rigid subgraph of G H which contains both (or equivalently, if they are adjacent or the vertices of
H corresponding to their bodies belong to the same

(d+1
2

)
-superbrick of H). This conjecture is open

even for d = 2, in which case it is consistent with the more general conjecture for the plane, see [16,
Conjecture 5.9].

6.3. Connectivity

We did not directly refer to Hendrickson’s (d + 1)-connectivity condition of Theorem 2 in our
proofs. This is because high vertex-connectivity follows for ‘free’ for body–bar graphs G H induced
by highly

(d+1
2

)
-tree-connected multigraphs. Another related observation is that if the multigraph H

is d(d + 1)-edge connected, then the body–bar graph G H is generically redundantly rigid in Rd , see
e.g. [30]. This now implies that G H is globally rigid in Rd . There are examples showing that the bound
d(d + 1) on the edge-connectivity of H cannot be improved.

In general, it has been conjectured that d(d + 1)-vertex-connectivity is sufficient for generic
rigidity for arbitrary bar-and-joint frameworks in Rd [19]. We can extend this and conjecture that
d(d + 1)-vertex-connectivity is sufficient for global rigidity of bar-and-joint frameworks in Rd .

6.4. Body–hinge and molecular frameworks

The infinitesimal rigidity results for body–bar frameworks have been generalized to body–hinge
frameworks [15,24,27]. This suggests the following generalization of Theorem 16. For a graph G and
integer k we use kG to denote the multigraph obtained from G by replacing each edge e of G by k
parallel copies of e.

Conjecture 1 (Body–hinge global rigidity conjecture). A graph G is generically globally rigid in Rd as a body–
hinge framework if the graph

((d+1
2

)
− 1

)
G is generically redundantly rigid as a body–bar framework in

Rd. Equivalently, a graph G is generically globally rigid in Rd as a body–hinge framework if the multigraph((d+1
2

)
− 1

)
G is highly

(d+1
2

)
-tree-connected.

For generic rigidity, there was a further conjecture, which in its various forms has been called the
Molecular Conjecture [32] and has recently been verified by Katoh and Tanigawa [18]. We have an
extended conjecture for the global rigidity of molecular frameworks.

Conjecture 2 (Molecular global rigidity conjecture). A graph G is generically globally rigid in Rd as a
molecular–hinge framework if and only if the multigraph

((d+1
2

)
− 1

)
G is highly

(d+1
2

)
-tree-connected.

In many contexts, including the study of infinitesimal rigidity, there is an equivalence between the
molecular–hinge structure on G and an associated bar-and-joint framework on the square G2 of G
in R3. However, for small cycles (of length at most 4) the shift between structures does not preserve
equilibrium stresses (or redundance). Thus it may not preserve global rigidity, as the following exam-
ple from [12] shows: consider two four-cycles with a common vertex. For this graph G we have that
5G is highly 6-tree-connected but G2 is not even redundantly rigid in R3.

Conjecture 3. Suppose that G has no cycles of length at most 4. Then G2 is generically globally rigid in R3 as
a bar-and-joint framework if the multi-graph 5G is highly 6-tree-connected.

6.5. Body–bar frameworks with identifications

During the construction for the main theorem, we carefully did additional splits to separate the
end-vertices of all bars incident with the same body, to obtain a body–bar structure. However, the
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Fig. 8. There are isostatic frameworks which generate a globally rigid framework (a), but others (b), when substituted do not
generate a globally rigid framework, due to failed connectivity. The first framework is globally rigid in the plane but the second
one is not – it is not 3-connected.

framework was already globally rigid before doing these additional splits. So some identification of
end-vertices will still preserve global rigidity. On the other hand, too much identification of the end-
vertices will destroy even first-order rigidity, as the ‘double banana’ can be cast as two bodies joined
by six bars, where two triples of bars share end-vertices.

An identified body–bar framework is a body–bar graph, with additional data for each body, which
partitions the incident bars into classes which will share a vertex of attachment. It may be inter-
esting to characterize which identifications preserve global rigidity (or even first-order rigidity) of a
body–bar graph.

6.6. Isostatic frameworks for bodies

It is not difficult to see, by rereading the proofs of the main lemmas, that if H is a highly(d+1
2

)
-tree-connected multigraph on at least two vertices then it is possible to replace each ‘body’

of the globally rigid body–bar graph G H by some isostatic graph preserving global rigidity in Rd .
This follows by observing that the edge addition steps within the bodies are not necessary to en-
sure global rigidity, and that the other operations, when restricted to the individual bodies, build up
isostatic graphs by edge splits and vertex additions.

For infinitesimal rigidity it is known that in all dimensions one can replace any isostatic sub-
framework with any other isostatic subframework on the same vertices and preserve infinitesimal
rigidity. However, the same general isostatic replacement does not necessarily preserve global rigidity.
This issue most clearly arises in the steps of the insertion lemmas when we are separating the attach-
ment points. While a careful separation (as used in our proof) does preserve global rigidity, a general
replacement can easily break down the simple necessary (d + 1)-connectivity condition. See Fig. 8,
which, in the plane, breaks the required 3-connectivity.

We do not currently have a conjecture for which isostatic replacements for bodies would preserve
global rigidity. So there is a residual puzzle about how to detect whether a bar and joint framework
in which we have ‘identified’ bodies with isostatic subframeworks, and distinct edges joining them,
has the required structure to apply this theorem and claim global rigidity.

6.7. Universal rigidity

Several recent papers have explored a stronger uniqueness property: a d-dimensional framework
G(p) is called universally rigid if it is a unique realization of G , with the given edge lengths, in all
spaces Rd′

for d′ ! d. Recent results of Gortler and Thurston [9] show that for generic p in Rd this
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property is equivalent to the existence of a self-stress for which the associated stress matrix Ω is
of full rank and positive semi-definite. Notice that this property is not generic, but the property of
having a positive semi-definite stress matrix of full rank does hold for an open set among the generic
configurations.

Without discussing the details here we remark that the key operations used in the inductive proof
of our main theorem (edge splitting and triangle exchange) appear to preserve universal rigidity,
provided we follow some additional rules when we insert new vertices. For example, if we adjust the
(grafting operation and hence the subsequent) triangle exchange, so that we select whether to insert
the vertex splitting an edge in its interior, or externally, we can ensure that the triangle exchange not
only increases the rank of the stress matrix, but takes the positive semi-definite matrix to a larger
one which is also positive semi-definite. With these additions the same proof method can be used to
derive an extension of Lemma 15, in which the stress matrix is positive semi-definite, too. Together
with Theorem 16 this implies, for each d ! 1, that every generically globally rigid body–bar graph G H
in Rd has a generic realization in Rd which is universally rigid. This gives an affirmative answer to
the more general [9, Question 1.16] in the case of body–bar graphs.
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