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Abstract This is an overview of some of the similarities and differences between 
structures such as frameworks and cabled tensegrities in the hyperbolic 
plane and hyperbolic space on the one hand and the Euclidean plane, 
the sphere and Euclidean space on the other hand. 
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1. Introduction 

There is a strong analogy between the unit sphere in Euclidean space 
and the hyperbolic plane. One can regard the hyperbolic plane E l 2  as 
half of the "unit sphere" in Lorenz space, namely the following set: 

112 = {(x, y ,  t )  E E ~ * ~  1 x2 + Y 2  - t2 = -1, t > 0). 

Of course, there is a similar definition for higher-dimensional Eu- 
clidean, spherical and hyperbolic spaces. So one can often "change the 
sign" in a formula in spherical geoemtry and create a correct formula in 
hyperbolic geometry. For example, in spherical trigonometry many of 
the standard formulas for a spherical triangle involve sines and cosines. 
To get an appropriate correct formula in the hyperbolic plane, when 
these functions are applied to edge lengths, replace the sine and cosine 
functions by the hyperbolic sine and the hyperbolic cosines function re- 
spectively. When they are applied to angles, leave the sine and cosine 
functions as they were. 

In the following we show some similarities and then differences be- 
tween hyperbolic and non-hyperbolic situations. 
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Figure 1. Non-congruent polyhedral surfaces 

2. Polyhedra in dimension 3 

In 1813 Cauchy [Cauchy, 18131 proved the following, which we state in 
modern language. A function f between sets in any space with a metric, 
such as Euclidean, spherical or hyperbolic space, is called a congruence 
if the distance between every pair of points p and q in one set is the same 
as the distance between f ( p )  and f (q) in the other set. Recall that a face 
of a convex polytope P (in Euclidean, spherical or hyperbolic space) is 
the intersection of a hyperplane with P that contains P on one side. (A 
homeomorphism is a function such that it and its inverse are one-to-one 
and continuous.) 

Theorem 2.1 (Cauchy). Suppose that f : P + Q is a homeomorphism 
between two convex polyhedral surfaces P and Q in such that f re- 
stricted to each face of P is a congruence. Then f itself is a congruence. 

This is an example of a local but partly global result. It is not entirely 
global because of the restriction that both the source and target sets are 
assumed to be convex. But if the correspondence f is assumed to be 
close enough to the identity and the source P is convex, then the target 
Q will be convex as well and Cauchy's theorem applies. But if only P is 
convex, Figure 1 shows that Q may not be congruent to P even in the 
simplest case when P has just five vertices. 

But what about hyperbolic space? Here it is instructive to look at 
Cauchy's proof. It has essentially two parts, a combinatorial topological 
lemma, and a local (and partly global) geometric lemma. The combina- 
torial lemma is the following: 

Lemma 2.2. If some subset of the edges of a convex polytope are as- 
signed a + or - such that there are at least four changes i n  sign (or no 
labeled vertices) around each vertex, then no edges are labeled anywhere. 

It  is instructive to try to find such a labeling for the first non-trivial 
case of a convex polyhedral surface, the (regular) octahedron. The proof 
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Figure 2. Polygonal arcs resembling opening arms 

of this lemma is a nice application of the Euler characteristic. One can 
find a good description of this lemma and the next in [Lyusternik] or 
[Aigner-Ziegler] for example. This lemma clearly holds when the convex 
polyhedral surface is in IHI3, since convexity plays a minor role. It  is only 
the topological and combinatorial structure of the graph of edges that 
matters. 

The geometric lemma is the following. I like to call this Cauchy's 
"arm" lemma, because the polygon involved looks like an opening arm. 
(There was a problem with Cauchy's proof of this lemma. It was not 
corrected until some years after his 1813 publication. The message seems 
to be that one should be careful here. See [Connelly] for a discussion of 
this.) 

Lemma 2.3 (Cauchy's arm). Suppose that f : A -+ B c S2 is a con- 
tinuous map from a convex polygonal arc A i n  the unit 2-sphere S2 that 
is a congruence when restricted to each edge o f A  and the angle at each 
internal vertex of A does not decrease. Then the distance between the 
endpoints of A are not less than the distance between the endpoints of 
B. 

Figure 2 shows what this looks like in the Euclidean plane, a limiting 
case of the sphere. 

Note that the target polygon B is not assumed to be convex. This 
lemma is then applied to small spheres centered at each vertex of the 
convex polyhedral surface P. Each edge incident to a vertex of P corre- 
sponds to a vertex on the corresponding sphere, and each dihedral angle 
corresponds to an internal angle of a spherical arc. The idea is that if 
the edges of the spherical polyhedron are labeled + or - depending on 
whether they increase or decrease, respectively, and there are only two 
changes in sign around a vertex, an arc with only + followed by an arc 
with - signs contradicts the Arm Lemma 2.3. 



192 NON-EUCLIDEAN GEOMETRIES 

But for a hyperbolic polyhedral surface we see that the Arm Lemma 
2.3 still applies since it is used for polygons in a sphere. So Cauchy's 
Theorem 2.1 is still true in hyperbolic space W3. Indeed, Cauchy's The- 
orem 2.1 generalizes to dimensions greater than 3, as well as to spherical 
and hyperbolic spaces of dimension greater than 3. See [Connelly] for 
more information and related results. 

3. Static rigidity 
A natural approach for rigidity questions is to linearize the conditions 

for the rigidity of constraints. In order to simplify the discussion, sup- 
pose that the polyhedral surfaces we consider all have only triangular 
faces. The rigidity constraints can be restricted only to pairs of vertices 
with an edge between them, where the edges act as bars. One version of 
the linear constraints can be described with forces acting on this frame- 
work of vertices and bars. For each vertex pi in this framework there 
is associated a force vector Fi, the external load, and the question of 
static rigidity is whether each appropriate external load can be resolved 
by some internal stress in the framework. This means that there are 
scalars wij associated with every edge between vertices pi and pj  such 
that for each i ,  

(The stress wij = 0 when there is no bar between pi and pj.) We say 
that an external force F = (. . . , Fi, . . . ) is an equilibrium force if it has 
0 linear and angular momentum, which means that xi Fi = 0, and xi Fi Api = 0, where A is the wedge product from linear algebra. There 
is no way that an external force F = (. . . , Fi, . . . ) can be resolved if it has 
any non-zero linear or angular momentum. So we define a bar framework 
to be statically rigid if every equilibrium force can be resolved. 

Note that this definition only depends on the underlying linear al- 
gebra, and so it applies to the sphere and hyperbolic space, as well as 
Euclidean space, since we can regard them all as being in an appropri- 
ate ambient linear space. Note that in dimension 3 the dimension of the 
space of equilibrium forces is 6 (assuming the framework is not just one 
bar or a single vertex), and there is an equilibrium equation for each of 
the three coordinates. If there are n vertices in the framework, there are 
3n equations to be satisfied. So there must be at least 3n - 6 bars in the 
framework. (A similar calculation holds in other dimensions.) 

We say that a framework is rigid if there is no continuous non- 
congruent motion of the points that preserves the lengths of the bars. 
The following is a basic result. See [Connelly] for a proof, for example. 
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Theorem 3.1. If a framework is  statically rigid i n  Euclidean, spherical 
or hyperbolic space, i t  is  rigid. 

So static rigidity is a very local form of rigidity. It  is easy to check that 
for a triangulated 2-dimensional spherical surface the number of edges 
in the triangulation is 3n - 6, and so there are just enough equations for 
static rigidity. So we have an infinitesimally local version of Cauchy's 
semi-global result due originally to Max Dehn. There is a clear proof in 
[Gluck] . 
Theorem 3.2 (Dehn). If P is  a convex polyhedral surface i n  Euclidean, 
spherical or  hyperbolic space, where all the 2-dimensional faces of P are 
triangles, then P is  statically rigid. 

Note that since there are just enough equations for static rigidity, it is 
enough to show that the homogenized version of the linear equilibrium 
equations (1) only have the 0 solution. In other words, in this case, it 
is enough to show that the 0 external force has only the 0 stress as a 
resolution. (A stress that resolves the 0 external force is called a self 
stress.) It is easy to check that there cannot be just two sign changes in 
the stresses in the edges adjacent to a vertex, and so Cauchy's combina- 
torial Lemma applies us to show that a self stress for P is 0. (This is the 
idea in [Gluck] following some ideas of A. D. Alexsandrov, but Dehn's 
proof is somewhat different.) Incidentally, W. Whiteley in [Connelly- 
Whiteley] showed that it is possible to get Dehn's Theorem 3.2 formally 
from Cauchy's Theorem 2.1 by a technique related to Pogorelov's corre- 
spondence mentioned below. 

4. The Pogorelov correspondence 
There is a very interesting formal corresondence from pairs of con- 

figurations of points in Euclidean space IEd to pairs of configurations 
of points in hyperbolic space md that has very useful properties with 
respect to distances. This is described in [Pogorelov]. 

Theorem 4.1 (Pogorelov). There is  a rational function f : IEd x Ed -+ 

JfIld x E l d  such that for all (pl, ql) and (p2, q2) i n  IEd x IEd we have 

where f = ( f l ,  f 2 ) ,  and I . . . I is  the usual Euclidean norm for IEd and the 
norm using the Lorentx inner product when the points are in i l ld .  



194 NON-EUCLIDEAN GEOMETRIES 

This map can be regarded as taking the configurations p = 
(PI, . . . , pn) and q = (ql, . . . , q,) to the configurations 

where, in particular if some pair of vertices in the p configuration is the 
same distance apart as in the q configuration in Euclidean space, then 
the corresponding pair of vertices are also the same distance apart in 
hyperbolic space. But an important consideration is that the image pair 
of configurations in hyperbolic space each depend on both configurations 
p and q. Nevertheless, the image of a point fl (pi, qi), say, only depends 
on pi and qi, and it turns out that it is possible to extend correspondences 
from p to q so the conditions of Theorem 4.1 hold. Furthermore, if both 
p and q are convex polyhdra in lEd, so are f (p) and f2 (p) in lHd. So this 
provides another proof of Cauchy's Theorem in hyperbolic space. But 
this still provides no direct way of transfering global results in Euclidean 
space to hyperbolic space. 

5. Global motions 
There are applications, where it is desirable to have a truly global 

result, with no restriction on the target configuration. But there can be 
problems when it comes to the case of hyperbolic geometry. For example, 
consider the following Lemma, which we called a "Leapfrog Lemma" and 
which was an essential component in the paper [Bezdek-Connelly]. 

Lemma 5.1 (Leapfrog). 
Suppose that p = (pl, . . . , p,) and q = (91, . . . , q,) are two configurations 
in Ed. Then there is a motion p(t) = (pl (t), . . . , p,(t)) in lE2d, which 
is analytic in t, such that p(0) = p, p(1) = q and for 0 < t < 1, 
Ipi(t) - p j  (t) 1 is monotone. 

The method in [Bezdek-Connelly] uses a specific formula, but we will 
discuss here another method. Both methods have difficulties in extend- 
ing the results to hyperbolic space. For any configuration of points 
p = (pl, . . . ,p,) in lEd define the Gramm matrix Gr  as an (n - 1)-by- 
(n - 1) symmetric matrix, whose i j  entry is the inner product pi . pj  for 
i = 1, .  . . , n - 1 and j = 1 , .  . . , n - 1, where we assume pn = 0. Define 
the configuration matrix as 

where each pi for i = 1, . . . , n - 1 is regarded as a column vector. Then 
th.e Gramm matrix Gr = P ~ P ,  where pT is the transpose of P .  
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So any Gramm matrix coming from a configuration of points in Ed is 
positive semi-definite with a kernel of dimension at most d. Conversely, 
any positive semi-definite matrix Gr with a kernel of dimension at most 
d can be written as Gr = PTP, where P is a d-by-n matrix and the 
columns of P serve as the coordinates of a configuration in Ed with 
p, = 0. So the Leapfrog Lemma 5.1 can be viewed as coming from the 
convexity of positive semi-definite matrices. 

But what about hyperbolic space? One can still define a Gramm 
matrix using the indefinite inner product, where 

and for each i 
Pi = (x i ,~ i ,Z i , .  ,ti), 

and hyperbolic space itself is defined as in the first section: 

We can assume that 0 is in the configuration as before. But now the 
Gramm matrix for this inner product is Gr  = P ~ D P ,  where P is the 
configuration matrix, as before, and D is a diagonal matrix with all 1's on 
the diagonal, except for the last which is -1. So Gr is indefinite with one 
negative eigenvalue while all the rest are positive. Convex combinations 
of these matrices could have more than one negative eigenvalue, and we 
have a quandry. Do we have a leapfrog lemma in hyperbolic space? We 
are left with the following rather unsettling questions and conjecture. 

Conjecture 5.2 (Hyperbolic-Leapfrog). 
Suppose that p = (PI,. . . , p,) and q = (91,. . . , qn) are two configurations 
in HId. Then there is a motion p(t)  = (pl (t), . . . , p,(t)) in which 
is analytic in t, such that p(0) = p, p(1) = q and for 0 5 t 5 1, 
< pi (t) - p j  (t), pi(t) - p j  (t) > is monotone. 

It is not clear if there is even a continuous monotone motion in any 
w ~ ,  for N sufficiently large, although this seems more likely to be true. 
On the positive side, we do have the following analogous result for the 
spherical case. 

Lemma 5.3 (Spherical-Leapfrog). Suppose that p = (pl, . . . , p,) and 
q = (91,. . . , qn) are two configurations in Sd. Then there is a mo- 
tion p(t)  = (pl (t), . . . , p,(t)) in S2d+1, which is analytic in t, such that 
~ ( 0 )  = p, ~ ( 1 )  = q and for 0 < t < 1, Ipi(t) - pj(t)l is monotone. 

This follows easily from the Euclidean case Lemma 5.1, but notice 
that the ambient space has dimension 2d + 1 instead of 2d. If 2d + 1 
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could be replaced with 2d even for d = 2, it would yield an extension 
of the main result (about unions or intersections of spherical disks) in 
[Bezdek-Connelly] to S2 following a method of Csikos. Similarly, there 
would be another extension to W2 if Conjecture 5.2 were true. Even 
if these conjectures are true, it is clear that there seems to be some 
particular asymmetry between spherical space and hyperbolic space. 
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