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Tensegrities and Global Rigidity

Robert Connelly

In 1947 a young artist named Kenneth Snelson
invented an intriguing structure: a few sticks sus-
pended rigidly in mid air without touching each
other. It seemed like a magic trick. He showed
this to the entrepreneur, builder, visionary,
and self-styled mathematician, R. Buckminster
Fuller, who called it a fensegrity because of its
“tensional integrity.” Fuller talked about tenseg-
rities and wrote about them extensively. Snelson
went on to build a great variety of fascinating
tensegrity sculptures all over the world, including
the 60-foot work of art at the Hirschhorn Museum
in Washington, DC. shown in Figure 21.1.

Why did these tensegrities hold up? What
were the geometric principles? They were often
under-braced, and they seemed to need a lot
of tension for their stability. So Fuller’s name,
tensegrity, is quite appropriate.

In this chapter I will show how to describe the
stability of most of the tensegrities that Snelson
and others have built, and how to predict their
stability. I begin with a set of principles that can
be used to understand many of the Snelson-like
tensegrities. This relies on the properties of the
stress matrix, a symmetric matrix that defines a
kind of potential energy that we would like to
minimize at a given configuration. This leads to a
lot of interesting examples one can build, assured
that the structure will not fall down.
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Then I will show how the rank of a stress
matrix can predict how generic configurations of
bar tensegrities (usually called bar frameworks)
predict a strong sort of rigidity that I call global
rigidity, and mention some exciting new results
where the stress matrix plays a central role. There
are several quite interesting applications of the
theory of tensegrities. Of course, there is a nat-
ural application to structural engineering, where
the pin-jointed bar-and-joint model is appropriate
for an endless collection of structures. In com-
putational geometry, there was the carpenter’s
rule conjecture, inspired by a problem in robot
arm manipulation. This proposes that a non-
intersecting polygonal chain in the plane can
be straightened, keeping the edge lengths fixed,
without creating any self-intersections. The key
idea in that problem uses basic tools in the theory
of tensegrity structures and stresses. Granular
materials of hard spherical disks can be reason-
ably modeled as tensegrities, where all the mem-
bers are struts. Again the theory of tensegrities
can be applied to predict behavior and provide
the mathematical basis for computer simulations
as well as to predict the distribution of internal
stresses.

Terminology and Notation

To define a tensegrity we first define a tensegrity
graph G with vertices 1,2,...,n in d-
dimensional space E¢. Edges are denoted as

unordered pairs of different vertices {i, j }, where
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Figure 21.1. Kenneth Snelson, Needle Tower, 1968, alu-
minum and stainless steel, 60 X 20 x 20 ft. — 18.2X%
6 X 6m.

i # j.Each edge of G is declared a cable, strut,
bar or not connected. The cables, struts, and bars
are members of the tensegrity, and are denoted by
dashed line segments, bold line segments, or thin
line segments respectively.

The next ingredient is a configuration
p = (p1,...,pn) of n points or nodes in
the FEuclidean plane or space, where each
pi corresponds to a vertex i of G. Nodes
connected by cables are allowed to get closer
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together (or stay the same distance apart), the
nodes connected by struts are allowed to get
farther apart (or stay the same distance apart),
but bars must always stay the same distance
apart.

The graph together with the corresponding
configuration is a tensegrity G(p). This notation
is useful since we sometimes want to consider the
abstract graph G without referring to a particu-
lar configuration, or the configuration p without
referring to any particular graph. The notation
is meant to suggest, for example, that there are
physical cables connecting pairs of nodes that
have cables connecting the corresponding ver-
tices of G.

A continuous motion of the nodes, starting
at the given configuration of a tensegrity, is
called a flex of the tensegrity. A trivial flex is
one that moves the configuration as a whole
without changing any distances between nodes,
for example rotations and translations, in space.
If the tensegrity has only trivial flexes, then it is
said to be rigid in E?. Otherwise it is flexible.
Note that, theoretically, members can cross
one another (i.e., intersect). For the purposes
of our mathematical model, the tensegrity is
a purely geometric object, but many of the
rigid tensegrities shown here can be built with
rubber (or plastic) bands for cables, and dowel
rods with a slot at their ends for struts or
bars. Figure 21.2 shows some examples of
rigid and flexible tensegrities in the plane and
space.

The rigid tensegrity in space in Figure 21.2 is
one of Snelson’s original objects. It is quite sim-
ple but suspends three sticks, the struts, rigidly
without any pair of them touching. Indeed, Snel-
son does not like to call an object made of
cables and struts a tensegrity unless all the struts
are completely disjoint, even at their nodes. A
tensegrity with all its struts disjoint and with no
bars (i.e., all the other members are cables) will
be called a pure tensegrity.

Now let’s discuss techniques for computing
the rigidity of tensegrities. As a by-product,
the definition and analysis of global rigidity
will emerge naturally. The stress associated to
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Flexible

In the plane

In space

Figure 21.2. Nodes are denoted by small round points, cables by dashed line segments, struts by solid line segments,

and bars by thin line segments.

a tensegrity is the vector 0 = (..., wjj,...),
where w;; = wj; is a scalar associated to the
member {i, j} of G. Astressw = (..., wjj,...)
is proper if w;; > 0 foracable {i, j} and w;; <0
for a strut {i, j}. There is no condition when
{i.j} is a bar. We set w;; = O if the nodes
{i, j} are not connected. We say a proper stress
w is strict if w;; # 0 when {i, j} is a cable or
strut.

Letw = (...,wj;,...) be a proper stress for
a tensegrity graph G. For any configuration p of
nodes in E4, define the stress-energy associated
to w as

Eo(p) =Y wij(pi — pj)*.

i<j

(21.1)

where the product of vectors is the ordinary dot
product, and the square of a vector is the square
of its Euclidean length.

Now think of the configuration p as fixed.
We want to compare other configurations g to
p- Let us say the tensegrity G(p) dominates the
tensegrity G(q), and write G(q¢) < G(p) for two
configurations ¢ and p if

|pi —pjl = 19i —q;|  for {i,j} acable,

lpi —pjil <lgi —q,l for {i,j} a strut and
for {i,j} a bar.

(21.2)

lpi — pjl = lgi —q;]

These are the tensegrity constraints for the
configuration p with respect to the tensegrity
graph G. So if G(p) dominates G(q) and ® is
a proper stress for G, then E,(p) > E,(q),
because the terms of (21.2) that correspond to ca-
bles have a positive stress and can only decrease
since the cable lengths can only decrease, while
the terms corresponding to struts have a negative
coefficient and the strut lengths can only increase.

Local and Global Rigidity

A tensegrity G(p) is locally rigid if the only con-
tinuous flexes of G(p) that satisfy the tensegrity
constraints of Equation (21.2) are congruences.
There is a good body of work devoted to the
detection and understanding of local rigidity.
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Figure 21.3. Three examples of planar rigid bar frame-
works; see the text for details.

However, most of the structures made by Snel-
son and other artists are globally rigid. This
means that for any other configuration g of the
same labeled nodes in E9, G(g) < G(p) implies
that ¢ is congruent to p. Even more strongly,
regard E4 C ED ford < D.If, even though
G(p) is in E?, it is true that G(p) is globally
rigid in ED forall D > d, then we say G(p)
is universally globally rigid. For example, both
rigid tensegrities in Figure 21.2, are universally
globally rigid. The example in Figure 21.3a is
rigid in the plane, but not globally rigid in the
plane, since it can reflect the upper left node
around a diagonal. Figure 21.3b is globally rigid
in the plane but not universally globally rigid,
since it is flexible in three-space. Figure 21.3c
is universally globally rigid. These are all bar
frameworks.

What can we say about more complicated
tensegrities? The energy function E, described
above helps. The idea is to look for situations
in which the configuration p is a minimum for
the functional E,,. The first step is to determine
when p is a critical point for E,, i.e., when all di-
rectional derivatives given by p’ = (p}...., p),)
starting at p are 0. This means that the following
equilibrium vector equation must hold for each
node i:

> wij(pj— pi) =0. (21.3)
J

In this case, w is an equilibrium stress for p,
called just a stress when the equilibrium is clear
from the context. To get an understanding of
how this works, consider the example of a square
in the plane as in Figure 21.4. It is easy to see
that the vector equilibrium equation (21.3) holds
for the three vectors at each node.

Figure 21.4. A square tensegrity with its diagonals,
where a proper equilibrium stress is indicated.

If a configuration p were the unique mini-
mum, up to rigid congruences, for E,,, we would
have a global rigidity result immediately, but
unfortunately this is almost never the case. We
must deal with affine transformations.

Affine Transformations

An affine transformation or affine map of E4
is determined by a dxd matrix A and a
vector be E4. If p = (p1.....pn) is any
configuration in E?, an affine image is given
bygq = (q1,...,qn), where g; = Ap; + b. If the
configuration p is in equilibrium with respect to
the stress w, then so is any affine transformation
q of p.

This brings us to the question: for a
tensegrity G(p) in E¢, when is there an
affine transformation that preserves the member
constraints (21.2)? It is clear that the matrix A is
the only relevant part, and it turns out that we also
only need to consider the members that are bars.
A preserves the length of bar {i, j} if and only if
the following holds:

(pi —pj)? = (g —4;)°
= (Api — Ap;)®
= [A(pi — pI" A(pi — p))
= (pi = )T AT A(pi = p)).
or equivalently,

i —p)TATA— 1) (pi —pj) =0 (21.4)
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where ()7 is the transpose operation, ¢ is the
d x d identity matrix, and vectors are regarded
as column vectors in this calculation. If Equa-
tion (21.4) holds for all bars in G, we say that it
has a bar preserving affine image, which is non-
trivial if A is not orthogonal. Similarly, G has
a non-trivial affine flex if there is a continuous
family of d-by-d matrices A;, where A9 = 1,
for ¢ in some interval containing O such that each
Ay satisfies Equation (21.4) for ¢ in the interval.

This suggests the following definition. If v =
{v1,..., v} is a collection of vectors in Ed, we
say that they lie on a quadric at infinity if there is
a non-zero symmetric d -by-d matrix Q such that
forall v; € v

vl Qv = 0. (21.5)

Notice that since the definition of an orthog-
onal matrix A is that ATA — I9 = 0, the
affine transformation defines a quadric at infinity
if and only if the affine transformation is not a
congruence.

Call the bar directions of a bar tensegrity
the set {p; — p,}, for {i, j} a bar of G. With
this terminology, Equation (21.5) says that if A
preserves bar length, then the member directions
of a bar tensegrity lie on a quadric at infinity. We
can prove:

Proposition 21.1. If G(p) is a bar framework in
E“4, such that the nodes do not lie in a (d — 1)-
dimensional hyperplane, then it has a non-trivial
bar preserving affine image if and only if it has a
non-trivial bar-preserving affine flex if and only if
the bar directions lie on a quadric at infinity.

Proof. The “only if” direction is shown above.
Conversely suppose that the member directions
of a bar tensegrity G (p) lie on a quadric at infinity
in e? given by a non-zero symmetric matrix Q.
By the spectral theorem for symmetric matrices,
we know that there is an orthogonal d-by-d
matrix X = (X7)~! such that:

A1 0 0 ---0
0 A 0 --- 0
XTQX= 0 0Az--- 0

00 0--2Ag
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Let A_ be the smallest A;, and let A4 be the
largest A;. Note oo < 1/A_ < 1/A4 < o0, A_
is non-positive, and A4 is non-negative when Q
defines a non-empty quadric and when 1/A_ <
t < 1/A4, 1 —tA; > O0foralli =1,...,d.
Working Equation (21.4) backwards for 1/A_ <
t < 1/A4 we define:

JT=1A1 0 0 0
0 Jictkiz 0 0

A =xT] ° G P
0 0 0 /17'1)%,

(21.6)

Substituting A; from Equation (21.6) into
Equation (21.4), we see that it provides a non-
trivial affine flex of G(p). If the configuration
is contained in a lower dimensional hyperplane,
we should really restrict to that hyperplane since
there are non-orthogonal affine transformations
that are rigid when restricted to the configuration
itself.

When do bar tensegrities have bar directions
that lie on a quadric at infinity? In £2, the quadric
at infinity consists of two distinct directions. So
a parallelogram or a grid of parallelograms has a
non-trivial affine flex. In E3 it is more interesting.
The quadric at infinity is a conic in the projective
plane, and such a conic is determined by 5 points.
An interesting example is the bar tensegrity in
Figure 21.5. The surface is obtained by taking
the line (x, 1, x) and rotating it about the z-axis.
This creates a ruling of the surface by disjoint
lines. Similarly (x, 1, —x) creates another ruling.
Each line in one ruling intersects each line in the
other ruling or they are parallel. A bar tensegrity
is obtained by placing nodes where a line on one
ruling intersects a line on the other ruling, and
bars such that they join every pair of nodes that
lie on same line on either ruling.

Alexander Barvinok asked when a framework
in a space of D dimensions can also be realized
in a subspace of d dimensions, d < D. He
proved,
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Figure 21.5. Figure (a) is the ruled hyperboloid given by x2 + y? — z2 = 1. Figure (b) is the flattened version after

an affine flex.

Theorem 21.2. If G(p) is a bar framework in
EP with less than d(d + 1)/2 bars, then it has a
realization in E? with the same bar lengths.

Proof. The space of d-by-d symmetric matrices
is of dimensiond + (d? —d)/2 = d(d + 1)/2.
So if the vector directions of the members of a
tensegrity are less than d(d + 1)/2, then it is
possible to find a non-zero d-by-d symmetric
matrix that satisfies Equation (21.5), and then flex
it into a lower dimensional subspace by using
Equation (22.4) until one of the diagonal entries
becomes 0.

If every realization G(p) of a bar graph G,
where the p’s are configurations in £, can be
realized in E? with the same bar lengths, then
we say that G is d-realizable. Note that this is a
property of the graph G: in order to qualify for
being d-realizable, one has to be able to push
a realization in EP down to a realization E?
for ALL realizations in EP. For example, the
1-realizable graphs are forests, graphs with no
cycles. In particular, a triangle is not 1-realizable.

This is inspired by a problem in nuclear mag-
netic resonance (NMR) spectroscopy. The atoms
of a protein are tagged and some of the pairwise
distances are known. The problem is to identify

a configuration in E£3 that satisfies those distance
constraints. Finding such a configuration in EP,
for some large D, is computationally feasible,
and if G is 3-realizable, one can expect to find
another configuration in E3 that satisfies the
distance constraints.

A graph H is a minor of a graph G if it
can be obtained from G by edge contractions
or deletions. If a minor of a graph G is not d-
realizable, then G itself is not d-realizable. It is
easy to show that a graph is 1-realizable if and
only if it does not have a triangle as a minor.
In other words, the triangle is the one and only
forbidden minor for 1-realizability. It is not too
hard to show that the graph K4, the tetrahedron,
is the only forbidden minor for 2-realizability.
Maria Belk and I showed:

Theorem 21.3. A complete list of forbidden mi-
nors for 3-realizability is the set of two graphs,
K5 and edge graph of the regular octahedron.

There is a reasonable algorithm to detect 3-
realizablity for an abstract graph and, when the
edge lengths are given, to find a realization
in E3. Tensegrity techniques are used in a
significant way.
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The Stress Matrix and the
Fundamental Theorem

The stress-energy function E,, defined by (21.1)
is a quadratic form, and it is an easy matter to
compute the matrix associated to it

Q= Zw,-jQ(i,j)
i<j
where the (i, j) entry is —w;; for i # j, and
the diagonal entries are such that the row and
column sums are 0. (Recall that any stress w;; not
designated in the vector formw = (--- , w;j,--+)
is assumed to be 0.) With this terminology we can

regard a configuration p = (p1,.... p,) in E4
as a column vector. Then
Eo(p) = ) wij(pi — p;)°
i<j
=Y o —x;)
i<j
+Zwij(yi -y ...
i<j
X
X2
= (x1 X2 xn)Q
Xn
)1
)2
+ iy L+
Yn
where each p; = (x;, yi,...),fori =1,...,n.

So we see that E, is essentially given by the
matrix 2 repeated d times. The tensor product of
matrices (or sometimes the Kronecker product)
gives the matrix of £, as Q ® Id, and

Es(p)=(TQ&I1p.

To rewrite the equilibrium condition (21.3) in
terms of matrices, define the configuration matrix
P for the configuration p as
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_(P1 P2 Dn
P = (1 1 ... 1)'
P is a (d + 1)-by-n matrix, and the equilibrium
condition (21.3) is equivalent to

PQ=0.

Each coordinate of P as a row vector multiplied
on the right by € represents the equilibrium
condition in that coordinate. The last row of ones
of P represent the condition that the column
sums (and therefore the row sums) of 2 are 0.
It is also easy to see that the linear rank of P is
the same as the dimension of the affine span of
Pls---» DPn in E9.

Suppose that we add rows to P until all the
rows span the co-kernel of 2. The corresponding
configuration p will be called a universal config-
uration for w (or equivalently €2).

Proposition 21.4. If p is a universal configura-
tion for w, any other configuration q which is in
equilibrium with respect to w is an affine image
of p.

Proof. Let Q be the configuration matrix for g.
Since the rows of P are a basis for the co-kernel
of 2, and the rows of Q are, by definition, in the
co-kernel of €2, there is a (d + 1)-by-(d + 1)
matrix A such that AP = Q. Since P and Q
share the last row of ones, we know that A takes

the form
(Ao b
= (1)

where Ag is a d-by-d matrix, b is a 1-by-d matrix
(a vector in E4), and the last row is all 0’s except
for the I in the lower right hand entry. Then we
see that foreachi = 1,...,n,q; = Aop;i +b, as
desired. 0O

The stress matrix plays a central role in this
theory. Note that when the configuration p =
(p1s--., pn) in E4 is universal (i.e., its affine
span is all of E d), for the stress w, the dimen-
sion of the co-kernel (which is the dimension
of the kernel) of Q is d, and the rank of Q
is n —d — 1. But even when the configuration
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p is not universal for w, it is the projection
of a universal configuration, and so the rank
Q<n-—d-1.

Now we come to one of the basic tools for
showing that specific tensegrities are globally
rigid and more. If w is a proper equilibrium
stress for the tensegrity G(p), then the difference
pi — pj, where w;; # 0, is called a stressed di-
rection and the member {i, j} is called a stressed
member. Note that if G(q) < G(p), w;; # 0, and
|pi — pjl # 1gi —q;l, then Ey(q) < Eo(p). So
if p is a configuration for the minimum of E,,
the stressed members are effectively bars.

Theorem 21.5. Let G(p) be a tensegrity, where
the affine span of p = (p1,..., pn) is all of
E4, with a proper equilibrium stress w and stress
matrix S2. Suppose further that

1. Q2 is positive semi-definite.

2. The configuration p is universal with respect
to the stress w. (In other words, the rank of Q
isn—d—1.)

3. The stressed directions of G(p) do not lie on a
quadric at infinity.

Then G(p) is universally globally rigid in all

dimensions.

Proof. Suppose that ¢ is a configuration such
that G(¢) < G(p). Then E,n(q) < Eu(p). By
Condition 1, Eyx(q) = En(p) = 0, and w is
an equilibrium stress for the configuration g as
well as p. By Condition 2 and Proposition 21.4,
q is an affine image of p. By Condition 3 and
Proposition 21.1, g is congruent to p.

Notice that in view of Proposition 21.1, Condi-
tion 3 can be replaced by the condition that G(p)
has no affine flexes in E¢. For example, if it is
rigid in E¢, that would be enough.

With this in mind, we say that a tensegrity
is super stable if it has a proper equilibrium
stress @ such that Conditions (1), (2) and (3)
hold. If just Conditions 1 and 3 hold and w
is strict (all members stressed), then we say
G(p) is unyielding. An unyielding tensegrity,
essentially, has all its members replaced
by bars.

R. Connelly

Examples

The Square Tensegrity

The stress matrix for the square of Figure 21.4 is
+1 -1 41 -1
-1 +1 -1 +1

+1 -1 +1 —1
-1 +1 -1 41

21.7)

SoQhasrank 1 = 4—-2—-1=n—-d — 1,
and since its trace is 4, its single eigenvalue is
4, and it is positive semi-definite. This makes it
unyielding, and since the underlying graph is the
complete graph, it is universally globally rigid.
It is also super stable. There are several ways to
generalize this example.

Polygon Tensegrities

I showed that a tensegrity, obtained from a planar
convex polygon by putting a node at each vertex,
a cable along each edge, and struts connecting
other nodes such that the resulting tensegrity has
some proper equilibrium stress, is always super
stable. Figure 21.6 shows some examples.

Radon Tensegrities

Radon’s Theorem says thatif p = (p1,..., pa+2)
are d +2 points in E4, no d + 1 in a hyperplane,
then they can be separated into two simplices o'
and 0¢~ of dimension i and d —i such that their
intersection is a common point, which is a relative
interior point of each simplex. They can also be
used to define a super stable tensegrity as well.
Write Zz:f Akpr = 0, where Zz:f Ak =0,
while Ay > Ofork =1,...,i +1,and A <O
fork =i+42,...,d+2. Then the stress matrix is

A
Az

Q=

(A Az Agg2).  (21.8)

Ad+2
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Cauchy polygon Grinbaum polygon

Roth polygon The points lie on a circle, but are

not constrained to lie on that circle

Figure 21.6. Some planar superstable polygons.

since for the configuration matrix P,

A
Az
pl " |=o. (21.9)
Ad+2
So the stress w;; = —A; A ;. The edges of o/ and

o9 are struts, while all the other members are
cables. Since therankisd +2—d —1 =1, and
Q2 is positive semi-definite, the tensegrity is super
stable. Figure 21.7 shows the two examples in the

plane and in three-space.

Centrally Symmetric Polyhedra

L. Lovasz showed that if one places nodes at the
vertices of a centrally symmetric convex poly-
tope, cables along its edges, and struts between
its antipodal points, the resulting tensegrity has
a strict proper equilibrium stress, and any such
stress will have a stress matrix such that Condi-
tions 1 and 2 hold, while condition 3 is easy to
check. Thus such a tensegrity is super stable and
universally globally rigid. Figure 21.8 shows such
an example for the cube, which is easy to check
independently.

Prismatic Tensegrities

Consider a tensegrity in E3 formed by two reg-
ular polygons (p1, ..., pn) and (pn+1,---, P2n)
in distinct parallel planes, each symmetric about
the same axis. Cables are placed along the edges
of each polygon. Each node of each polygon is
connected by a cable to a corresponding node

Figure 21.8. A cube with cables along its edges and
struts connecting antipodal nodes, which is super stable.

in the other polygon, maintaining the rotational
symmetry. Similarly, each node of each polygon
in connected to a corresponding node in the other
polygon by a strut, maintaining the rotational
symmetry. The ends of the cable and strut are k
steps apart where 1 < k < n — 1. This describes
a prismatic tensegrity P(k,n). Each P(n,k) is
super stable when the angle of the twist from a
node in the top polygon to the projection of the
node at the other end of the strutis 7 (1/2+1i/n).
Figure 21.9 shows P (6, 1).
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Figure 21.9. The prismic tensegrity P (6, 1).

The Snelson tensegrity in the introduction is
P@3,1).

Highly Symmetric Tensegrities

Many of the tensegrities created by artists such as
Snelson have the super stable property discussed
here. They need the stress for their stability. Their
tensional integrity is part of their stability. Sym-
metry seems to a natural part of art, so I thought
it would be interesting to see what symmetric
tensegrities were super stable. It turns out that the
symmetry simplifies the calculation of the rank
and definiteness of the stress matrix. In addition,
the theory of the representations of finite groups
is a natural tool that can be used to decompose the
stress matrix. With Allen Back and later Robert
Terrell, we created a website where one can view
and rotate the pictures of these tensegrities.

The tensegrity graph G is chosen so that there
is an underlying finite group I' acting on the
tensegrity such that the action of I' takes cables
to cables and struts to struts, and the following
conditions hold:

1. The group I' acts transitively and freely on the
nodes. In other words, for each pair p;, p; of
nodes, there is a unique element g € I' such
that gp; = p;.

2. There is one transitivity class of struts. In other
words, if {p;, p;} and {pg, p;} are struts,
then there is g € I' such that {gp;,gp;} =

{Pr, p1} as sets.

Figure 21.10. A super stable tensegrity from the catalog
at http://www.math.cornell.edu. In the catalog, the struts
are colored green, one cable transitivity class is colored
red, and the other blue. In this example, the cables lie on
the convex hull of the nodes, and struts are inside.

3. There are exactly two transitivity classes of
cables. In other words, all the cables are par-
titioned into two sets, where I" permutes the
elements of each set transitively, but no group
element takes a cable from one partition to the
other.

The user must choose the abstract group, the
group elements that correspond to the cables,
the group element that corresponds to the struts,
and the ratio of the stresses on the two classes
of cables. Then the tensegrity is rendered.
Figure 21.10 shows a typical picture from the
catalog at http://www.math.cornell.edu.

Compound Tensegrities

The sum of positive semi-definite matrices is
positive semi-definite. So we can glue two super
stable tensegrities along some common nodes,
and maintain Condition 1. Condition 3 is no
problem. The rank Condition 2 may be violated,
but each of the individual tensegrities will remain
globally rigid, even if some of the stresses vanish
on overlapping members.
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Figure 21.11. Two superstable tensegrities are added to get a third.

One example of this process is the delta-Y
transformation. If one super stable tensegrity has
a triangle of cables in it, one can add a tensegrity
of the form in the upper right of Figure 21.7 so the
stresses on the overlap of the three struts exactly
cancel with the three cable stresses in the other
tensegrity. So the three triangle cables replace the
three other cables joined to a new node inside
the triangle. In this case the resulting tensegrity
is still super stable since the radon tensegrity is
planar and using Condition 3. Figure 21.11 shows
how this might work for the top triangle of the
Snelson tensegrity of Figure 21.2. Figure 21.12
shows this replacement on both triangles.

If the replacement as in Figure 21.12 is done
for a polygon of with four or more vertices,
the resulting tensegrity may not be super stable
or even rigid, but if the polygons have an odd
number of vertices and the struts are placed as
far away from the vertical cables as possible,
then the resulting tensegrity is super stable. In
other words, if the star construction is done on
P2k + 1,k) as in Figure 21.13 the resulting
tensegrity is super stable.

It is also possible to put two (or more)
super stable tensegrities together on a common
polygon to create a tensegrity with a stress
matrix that satisfies Condition 1 while the
universal configuration is 4-dimensional instead
of 3-dimensional. But each of the original
pieces is universally globally rigid. The 4-
dimensional realization has an affine flex
around the 2-dimensional polygon used to
glue the two pieces together. So the tensegrity
has two non-congruent configurations in E3
as one piece rotates about the other in E*.

Figure 21.12. The A — Y transformation applied to a
Snelson Tensegrity.

Figure 21.13. A flexible tensegrity.

Meanwhile struts and cable stresses can be
arranged to cancel, and thus those members
are not needed in the compound tensegrity.
Figure 21.14 shows this with two Snelson
tensegrities combined along a planar hexagonal
tensegrity.
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Figure 21.14. A compound rigid but not superstable
tensegrity.

Figure 21.15. A flexible tensegrity in the plane occurs
when the struts don’t intersect.

This is something like the start of the Snelson
tower of Figure 21.1, but the hexagonal polygon
in the middle is planar, which seems a bit sur-
prising. This tensegrity is unyielding and rigid,
but not super stable. But possibly to create more
stability Snelson includes more cables from one
unit to the other, and this destroys the planarity of
the hexagon.

There are many different ways to combine
super stable units, possibly erasing some of the
members in the basic units to get similar rigid
tensegrities.

Pure and Flexible Examples

Recall that a pure tensegrity is one that has only
cables and struts and the struts are all disjoint.
We have seen several examples in E3 of pure
tensegrities, the simplest being Snelson’s original
as in Figure 21.11 on the left. But what about the
plane? One might be tempted to think that the
tensegrity of Figure 21.15 is rigid, but it isn’t.

Indeed, there are no pure rigid tensegrities in
the plane. This follows from the proof of the
carpenter’s rule property. This theorem says that
any chain of non-overlaping edges in the plane
can be continuously expanded (flexed) until it is
straight. This result also allows for disjoint edges
and, at least for a short time, the expansion can
be run backwards to be a contraction, keeping the
struts at a fixed length.

There’s more — much more — to say about
this rapidly-evolving subject; see the notes at the
end of the book.
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