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E L L I P S O I D S  A N D  L I G H T C U R V E S  

I. I N T R O D U C T I O N  

Even the largest of the ,-~ 3000 catalogued asteroids are too small to be re- 
solved by the largest optical telescopes on Earth. Therefore, an asteroid's 
physical properties (e.g. dimensions, spin vector, spatial orientation) must 
be deduced indirectly from measurements of its total (disc-integrated) 
brightness. In general, brightness-versus-time functions, or l ightcurves,  are 
periodic because asteroids rotate and are not homogeneously scattering 
spheres. The form of a lightcurve clearly depends on the shape and light- 
scattering properties of the asteroid as well as on the viewing geometry. 

Although many asteroidal shapes are possible, here we consider the case 
when the shape is an ellipsoid, that is, the region bounded by a surface given by 
the equation: 

(1) ( x /a )  z + (y /b )  z + ( z /c )  2 -- 1, 

where a, b, c are the semi-axes and satisfy a/> b >~ c. For dynamical reasons we 
assume that this ellipsoid rotates about the c-axis. Theoretical arguments [1] 
and observational evidence [2] suggest that ellipsoids provide decent approxi- 
mations to the gross shapes of at least the largest (maximum dimension 
> 100 km) asteroids. 

To complete this model, we must assume some light-scattering law for the 
asteroid surface, and then integrate over the visible, illuminated portion of 
the surface to determine the intensity of light reflected toward Earth. For 
simplicity, we merely take a plane perpendicular to the line of sight from the 
asteroid to the Earth, and then orthogonally project the visible, illuminated 
portion of the ellipsoid into this plane. The asteroid's brightness is then 
assumed to be proportional to this projected, visible, illuminated area (see 
Figure 1). For instance, the MAA logo in Figure 2 does not obey this 'geo- 
metric' scattering law. We assume that the Sun and the Earth are points 
infinitely far from the asteroid, so we can ignore parallax effects. 

What can be said about the lightcurve of a geometrically scattering ellip- 
soid? In answering this question, it is helpful to have a simple, concise formula 
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Fig. 1. The brightness of a geometrically scattering ellipsoid, as seen from Earth, is proportional 
to the projected, visible, illuminated portion of the ellipsoid. 

Fig. 2. AsketchofpartofthelogooftheMathematicalAssociationofAmerica.Theeightsidesof 
the icosahedron that are both visible and illuminated have brightnesses that depend on viewing 
and/or illumination angle, so this figure's light-scattering law is not 'geometric'. 

for the area of  a projection of  an ellipsoid. In  this paper  we derive such an 

expression, and use it to obtain a general formula for the projected, visible, 

i l luminated area of  a triaxial ellipsoid for arbi t rary S u n - E a r t h - a s t e r o i d  
geometry.  It  turns out  that  the lighteurve of  an ellipsoid has special properties 

that  can be exploited to test the hypothesis  that  a given optical or  radar  

l ightcurve could be due to a geometrically scattering ellipsoid. (See [3] and 
[4] for related discussions.) 
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2. P R O J E C T E D  AREAS OF ELLIPSOIDS 

In this section, we assume 'opposition geometry', i.e. that the source of 
illumination (e.g. the Sun or a radar transmitter) and the detector (e.g. an 
Earthbound optical telescope or radar receiver) are in the same asteroid-centric 
direction. Whereas most optical observations of asteroids are conducted with 
the asteroid-centric directions of the Sun and Earth at least several degrees 
apart, radar observations come very close to realizing true opposition 
geometry, because a single telescope serves as transmitter and receiver. 

Given an ellipsoid such as (1) and a direction, what is the area of the 
projection or shadow (as in Figure 3) onto a plane perpendicular to this 
direction? The answer is surprisingly simple, and can be expressed concisely 
using matrix notation. 

We rewrite (1) as: 

(2) xtQx = 1, 

where 

t (  1/!) 0 0 t 0 = O/b) 2 0 

o 

x t=(xyz) ,  x =  , a n d (  )t denotes transpose. 

~ $ 

Fig. 3. Project ionofanel l ipsoidontotheplaneperpendicular toaspecif ieddirect ion.Thecross-  
hatched area A is given by Theorem 1. 
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Note that if(l) had xy, xz, or yz terms, (2) would be the same but Q would have 
some nonzero off-diagonal elements. We choose a coordinate system with 
origin at the center of the ellipsoid. Suppose that 

t el) 
e = e 2 

e 3  

2 2 ~  is a unit vector in the direction of the Earth (so e 2 + e2 + e3 1). Note that 
the determinant of Q, det Q, is (l/abc) 2. In the following, we regard one-by-one 
matrices as scalars, and we regard Q as a symmetric matrix, not necessarily 
diagonal. 

LEMMA. With the ellipsoid defined by (2), the followin 9 statements about a 

particular vector x are equivalent: 

(i) x is an eigenvector for Q (i.e. Qx = 2x, x ~ 0); 
(ii) x lies on one of  the axes of  the ellipsoid defined by (2), or, if two axes are 

the same length, x lies in the plane containing them, or (2) is a sphere; 
(iii) the tanyent plane to (2) in the direction x (i.e. at the point (1/xtQx)x) is 

perpendicular to x. 

Proof. There is a basis for 3-space consisting of vectors that are mutually 
perpendicular and all eigenvectors for Q. This is the standard polar decom- 
position theorem. With respect to this basis formula, (2) takes the form (1). 
Thus (i) and (ii) are equivalent if the axes are of different lengths. The other 
cases follow easily. 

For (iii) note that the gradient of the function xtQx is the vector 2Qx. 
Thus Qx is perpendicular to the tangent plane of (2) at (1/xtQx)x, and x is 
perpendicular to this tangent plane if and only if x is parallel to Qx, i.e. if 
and only if x is an eigenvector for Q. Therefore (i) is equivalent to (iii). 

THEOREM 1. The area A of  the projection of  the ellipsoid (1) or (2) onto 
the plane perpendicular to e is given by: 

(3) A = ~zabc[(el/a) 2 + (e2/b) 2 + (e3/c) 2] 1/2 

= 7r(etQe/det Q) 1/2. 

Proof. By the remarks above, if T is an orthogonal matrix, then in a 
coordinate system defined by T, the area of the projection remains the same; 
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defining Q ' =  TtQT and e ' =  Te, then de tQ  = det Q', le'l = lel = 1. Thus we 

know by Lemma 1 that (3) holds (in the form of the last right-hand expression) 
for any vector e such that the following hold: 

[el = 1 

e is an eigenvector for Q, 

where A in (3) is the projection of an ellipsoid onto a plane perpendicular to e. 
Now let us remove the condition that e be an eigenvector for Q. Let p(x) = 

x - ( e ' x ) e  be the orthogonal projection of a vector x onto the plane per- 
pendicular to e. Then we find a linear function T: R 3--* R 3 such that 

(a) T(e) = e: 
(b) p(x) = p[T(x)],  for all x in R3; 

(c) T(e l) = t e, where e ± is the plane perpendicular to e in R 3, and t~ is the 
tangent plane to (2) at (1/e'Qe)e. 

We see that there is one and only one T as follows. Complete e to an 
orthogonal basis of R 3. (a) defines T(e). (b) and (c) define the images of the 
other basis vectors. Clearly (b) and (c) hold if they hold on a basis. 

Call the new matrix Q' = TtQT. Let S be the surface of the ellipsoid defined 

by (2), and S' be the corresponding surface for Q'. Let A' be the area of the 

projection, defined by p, of S'. 
(b) implies that p(S) = p(S'), and thus A = A'. 
Let t' e be the tangent plane of S' at the point on the ray through e, (1/¢Q'e)e. 

(c) implies that t' e is perpendicular to e. Thus (by the Lemma), e is an 

eigenvector for Q', so formula (3) applies to e and Q'. 
(a), (b), and (c) together imply that det T = 1, and thus det Q = det Q'. (Geo- 

metrically T is a 'shear' parallel to e.) 

Collecting these results, we obtain: 

A = A  I 

= rt(etQ,e/det Q,)l/2 

= 7t(¢Qe/det Q,)l/2 

= n(e~Qe/det Q)1/2, 

which is the desired formula. This completes the proof. 
Suppose that we have an ellipsoid whose equation is given by the matrix 
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TtQT, where Q is diagonal as in (2) and 

\o/C°sO sinO i )  (S io~ 0 - c o s ~ )  
• =l-s nO cosO 0 

0 ,,cos ~ 0 sin ct 

x cos o~ - sin . 
sin co cos o~ / 

Here 0 is the angle of rotation of the asteroid, ~ is the angle from the asteroid's 
spin vector to the direction of Earth, and 09 (defined in Section 3) is zero at 
opposition. By (3), any lightcurve taken at opposition must have the form: 

(4) A = rmbc[(sin a sin O/a) 2 + (sin ~ cos O/b) 2 + (cos a/C) 2] 1/2. 

In the language of Fourier analysis, this says that the square of the lightcurve 
has only the zeroth and second harmonics. The presence of any other 
harmonics in an opposition lightcurve indicates that one of our assumptions is 
invalid, i.e. either the asteroid is not an ellipsoid or the back-scattering law is 
not geometric, or both. 

3. N O N O P P O S I T I O N  G E O M E T R Y  

We now generalize Theorem 1 to the situation when the asteroid-centric 
directions e and s of the Earth and Sun are not equal. In this case, the solar 
phase angle tp between e and s is nonzero, and it is convenient to define the 
obliquity angle co as the dihedral angle between the plane containing e and 
e x s and the plane containing e and the spin axis. 

In the following, we assume that the ellipsoid has Equation (2), with Q 
any (not necessarily diagonal) symmetric matrix. 

T H E O R E M  2. The area A of the projection onto the plane perpendicular to 
e of the visible portion of the ellipsoid (2), illuminated in the 9iven direction s, 
is 9iven by: 

(5) A = 7zabc[(etQe)l/2(stQs)l/2 + e'Qs]/2(stQs) 1/2. 

Proof. The projection of the whole ellipsoid onto the plane P perpendicular 
to e has as its boundary an ellipse El,  and Theorem 1 implies that the area 
bounded by E1 is given by (3). 

The terminator, or boundary between the illuminated and unilluminated 
portions of the ellipsoid, is an ellipse that is the intersection of a plane P, 
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through the center of the ellipsoid with the ellipsoid itself. The projection of 
this terminator into the plane perpendicular to e is yet another ellipse E2. 

It is clear that E 1 and E 2 are tangent and share the same center. Thus the 
projected, visible, illuminated region is bounded by arcs of E1 and E 2. (See 
Figure 4.) 

If A~ and A2 are the areas of E1 and EE, respectively, then the projected, 
visible, illuminated area A is either (A 1 + A2)/2 or (AI - A2)/2, depending on 
whether the Earth and the Sun are on the same (+)  or opposite ( - )  side(s), 
respectively, of the plane Pt of the terminator. (This result follows from the 
symmetry of both E 1 and E 2.) Since A~ = nabc[e'Qe] 1/2 by (3), we need only 
find A 2. By Theorem 1, the projection of the illuminated portion of the 
ellipsoid onto the plane perpendicular to s is given by 

As = nabc[stQs] 1/2. 

By the discussion preceding Theorem 1, Qs is perpendicular to the terminator 
plane Pr  Let fl be the dihedral angle between Pt and the plane perpendicular 
to s. Then 

AgA, = cos fl = s.Qs/[Qsl = stQs/[ Qsl, 

where A t is the area of Pt contained by the ellipsoid. Applying the same 
reasoning to A t and A 2 yields 

/ . . . . . . . .  

Fig. 4. Projected, visible, illuminated area A of the geometrically scattering ellipsoid (top) is the 
average of the areas A t and A 2 of the ellipses E 1 and E2. These ellipses are the projections (in the 
plane perpendicular to the ellipsoid-Earth line) of the ellipsoid and the terminator. 



94 ROBERT CONNELLY AND STEVEN J. OSTRO 

A2/At = l e ' Q s l / l Q s t .  

Combining these formulas gives 

(6) A2 = ~abcle'Qsl/[s 'Qs] 1/2. 

Since Qs is perpendicular to the terminator plane P ,  e is on the same side 
of Pt as s if and only if etQs is positive. Thus the formula above for A2, with 

absolute value signs removed, gives the desired signed area. Combining this 
result with the formula for A1 gives (5) and finishes the proof. 

4. T H E  OPPOSITION LIGHTCURVE AS AN APPROXIMATION TO A 

NONOPPOSITION LIGHTCURVE 

The general formula (5) reduces to the simpler formula (3) for the special 
case of opposition (e = s, q0 = 0). In the previous section's notation, the extent 
to which A t approximates A increases as [ tpl decreases. Furthermore, whereas 
opposition lightcurves can have only zeroth and second harmonics, non- 
opposition lightcurves can also have higher even harmonics. 

In this section, we use the Fourier properties of ellipsoid lightcurves to 
derive a constraint on how well A 1 approximates A. This constraint depends 
on the ellipsoid's maximum axis ratio (a/c) as well as on the solar phase 
angle (q0), and provides a simple test of the hypothesis that a given lightcurve 
could actually be due to a geometrically scattering ellipsoid with a/c no 
larger than an a priori upper bound, m. 

Let 5 be the upper bound on the fractional error incurred by using A t as 
an approximation to A: 

(A 1 - A)/A <~ 5 

or, since A = (A t + A2)/2 , 

(7) (A 1 - -  A2)/(A 1 + A2) ~ 5, 

where A 2 can be negative. 
We defer evaluation of 5 to Section 5, digressing here to derive a constraint 

on the Fourier properties of A 2. Manipulating (7), 

A 1 - A ~ s A  

A1 ~<(1 +5)A 

A 2 ~< (1 + 25 + 52)A 2 

A 2 - A 2 ~< (25 + 52)A 2 

(A 2 - A2) 2 ~< "cA 4 
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where r = (2e + g2)2. Recalling that A1 and A are functions of the rotat ional  

phase angle, 0, we integrate over  a full cycle: 

ff2n I2~ (8) ( l /n) (A12 - A2) 2 dO ~< r( l /n)  A 4 dO. 
0 dO 

We expand the pertinent functions as Four ier  series: 

A 2 = ~ a.  COS nO + b,, sin nO 
n=O 

A 2 = 8o + 82 cos 20 + b z sin 20 

f (l/n) A 4 dO = 2ao 2 + (a~ + b~) 
n=O n=l 

( i /n)  (A~ - A2) 2 dO 
0 

= 2(ao - do) 2 + (a2 - 82) 2 + (b2 - ~2) 2 + (a.2 + b.).2 
n~0,2 
n>0 

Combining this result with (8) we get 

~. (a~+b~)<~(1/n) (A~-AZ)2dO<~r(1/n) A4dO 
n~0,2 JO 0 

Thus we finally obtain our  test 

(9) ¢ = Z (a. 2 + b. 2) 2 + 2 (a. 2 + b.2) ~< z = (2e + e2) 2, 
n~:0,2 n~>l 

where the test statistic f can be calculated from the actual lightcurve, A. If(9) is 
violated, then the asteroid is not  an ellipsoid or the scattering law is not  

geometric, or both. 

5. EVALUATION OF g 

The following theorem indicates that the upper  bound e in (7) should be equated 
t o  (a/c) 2 tan2(~/2), where a/c is the ellipsoid's maximum axis ratio (Section 1). 
This completes the definition of z in (9). 

T H E O R E M  3. The maximum value of (A 1 -A2) / (A  1 + A2) is 

(a/c) 2 tan2(~0/2). 
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Pro@ We apply (5) and (6) to the above expression: 

A 1 - A2 (e'Qe) 1/2 - e'Qs/(s'Qs) 1/2 
(10) A1 + Az (e'Qe) ~/2 +e'Qs/(s'Qs) 1/2 

(e, Qe)l/2(s, Qs) l/2 _ e'Qs 

(etQe) l/2(stQs) 1/2 + etQs" 

Write Q = BiB for some matrix B. This is always possible since (2) defines an 
ellipsoid (i.e. is positive definite). Write Be = ~, Bs = ~. So using, to denote the 

inner product, we have 

E.~, = Be'Bs = etBtBs = etQs.  

Thus we rewrite (10) as 

31--32 I ~ l l ~ l - ~ ' ~  

A,+A2 I~11~1 + ~ ' ~  

1 - cos 0 

1 + cos 0 

= tan 2 (0/2) 

where ~ '~= I~ll~lcos0, and 0 is the angle between ~ and ~. Thus (10) is 
maximized when 0 is maximized, since the tangent function is monotone 

increasing for 0 ~< 0/2 ~< n/2. 
Notice that the right-hand side of (10) is defined for any positive definite 

symmetric matrix Q of any size. In particular, we will first consider the case 
when Q is 2 x 2. We can think of this as restricting the given Q to the plane 

of e and s. Replacing Q by a scalar times Q (or similarly for 13) does not 
affect the value of (10), and we can choose an orthogonal basis so that Q is 
diagonal. All these considerations imply that we choose the 2 x 2 matrix 

where m > 1 is the maximum axis ratio for the ellipse defined by (2). In this 
coordinate system 

Icosoe  =fcos(oe+ q 
e = \ sin Oe j ,  s \s in(0e+~p), /  

The transformation defined by the matrix B takes lines that make an angle 
0 with the x-axis into lines that make an angle 0-with the x-axis. Define 
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cos 0 = f ( O ) = B x / i B x l = ( c o s 2 0 + m 2 s i n 2 0 ) _ , , 2 (  "] //cos 0"~ 
\ m s i n 0  / t, sin g J '  

where x \ s i n 0 ] "  Note that tano-= mtan0. Thus, if 0 i corresponds to 

~ for i = 0, 1, then 

O-1 - O-o = I f'(O) l dO. 
Oo 

For 01 = 0 e + ~0, 0o = 0e, 

f 
0e+~O 

(11) ~ -- If'(O)ldO. 
d o e  

The problem is to find 0e such that (11) is maximized for fixed q~. However, 
I f'(0)l has a relative maximum only for multiples of ~, and is symmetric 
about  0. Explicitly, 

I f'(0)l = d0-/d0 = m/(cos 20 -t- m 2 sin 20). 

Thus the maximum of (11) occurs when the interval 0e~< 0 ~< 0e + ~0 is 
symmetrically placed about  0 or ~, i.e. 0 e = -  (p/2. In either case, the 
right-hand side of (10), using the special form for Q, simplifies to 

(12) m 2 tan2(~o/2). 

The intersection of any plane through the center of the ellipsoid (2) is an 
ellipse and (12) serves as a maximum for (10) for e-s on that ellipse. The only 
difference from one ellipse to another in (12) is m, the maximum axis ratio, 
since q~ is assumed to be constant. But for the ellipsoid (1) the major and 
minor semiaxes (a and c, respectively) correspond to the directions of the 
points on the surface having the maximum and minimum distances from the 
center of the ellipsoid. Thus a/c represents the maximum axis ratio for any 
ellipse through the center. Thus, for m = a/c, e = m 2 tan2(~o/2) is the upper 
bound sought for ( A -  A1)/A. See [3] for applications of Theorem 3 to 
interpretation of actual asteroid lightcurves. 
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